
Math 374, Dynamical Systems, Fall 2017

The Quadratic Map Qc is Topologically

Conjugate to the Shift Map σ

1 The Set Up

Recall that Qc(x) = x2+c is the quadratic map and that p+ = 1
2
(1+
√

1− 4c) is the larger of the two
fixed points. If c < −2, a symmetrical piece of the bottom of the graph of Qc lies outside the square
with vertices (p+, p+), (−p+, p+), (−p+,−p+) and (p+,−p+). This follows because Qc(0) = c < −p+
for c < −2.

The point −p+ maps to p+ on the first iterate and is thus eventually fixed. There are two pre-
images of −p+, denoted α and −α, which are eventually fixed at p+ after two iterates. We compute
that α =

√
−c− p+, which is real because c < −p+. The open interval A1 = (−α, α) maps below

−p+ on the first iterate, then above p+ on the next iterate, and then off to infinity as n gets larger.
Consequently, we think of A1 as the trapdoor; any point whose orbit eventually lands in A1 will
escape to ∞.

Let us define the following important closed intervals:

I = [−p+, p+]

I0 = [−p+,−α]

I1 = [α, p+]

Note that I = I0 ∪A1 ∪ I1. The open interval A1 and all of its pre-images An contain all the points
that escape to∞. The sum of the length of these intervals equals the length of I. We are interested
in the set of points Λ that remain in I under iteration of Qc. As discussed in class,

Λ = {x ∈ I : Qn
c (x) ∈ I ∀n}

is a Cantor set — a nonempty, closed, and totally disconnected set.

2 The Itinerary Map

Definition 2.1 (The Itinerary Map) Suppose x ∈ I. The itinerary of x is the infinite sequence

S(x) = (s0s1s2s3 . . .) where

{
sj = 0 if Qj

c(x) ∈ I0, and

sj = 1 if Qj
c(x) ∈ I1.

Here, we define Q0
c(x) = x, so that s0 reveals which interval x starts in. Since x ∈ Λ, we know that

every iterate will stay in I and can never land in A1. Thus, Qj
c(x) is always in either I0 or I1 for

any j. This means that the sequence defined by the itinerary map will be an infinite sequence of
0’s and 1’s. In other words, S is function from Λ to Σ2, the space of sequences of 0’s and 1’s. The
reason that S is called the itinerary map is that each entry in the sequence S(x) will tell us whether
the corresponding iterate of x is to the left of the trapdoor (0) or to the right (1).
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Example 2.2 The following itineraries can be calculated easily with a good web diagram:

S(p+) = (11111 · · · )
S(−p+) = (01111 · · · )
S(α) = (10111 · · · )

S(−α) = (00111 · · · )
S(p−) = (00000 · · · ).

Key Observation: Note that the dynamical behavior for each x-value shown (under Qc) is
identical to the dynamical behavior of the corresponding sequence S(x) under the shift map. For
example, p+ is fixed under Qc, while its itinerary S(p+) = (111 · · · ) is fixed under the shift map.
The point α is eventually fixed at p+ after two iterates, while its itinerary S(α) = (10111 · · · ) is
eventually fixed at (111 · · · ) after two iterates of the shift map. This will always be the case as
the map Qc on Λ is actually topologically conjugate to the shift map σ on Σ2. In other words, the
dynamics of Qc on the Cantor set Λ are equivalent to the dynamics of the shift map σ on Σ2! This
is a truly remarkable fact demonstrating the usefulness of symbolic dynamics. We can understand
the complicated dynamics of Qc by using a simple shift map on the space of sequences of 0’s and 1’s.

Theorem 2.3 If c < −2, then Qc on Λ is topologically conjugate to the shift map σ on Σ2. The
itinerary map S : Λ 7→ Σ2 is the conjugacy.

3 Proof of Theorem 2.3

There are two items we must show:

1. S ◦Qc = σ ◦ S, and

2. S is a homeomorphism.

Proof of 1. Let x ∈ Λ and suppose that x has itinerary S(x) = (s0s1s2s3 · · · ). By definition of S,

x ∈ Is0 , Qc(x) ∈ Is1 , Q2
c(x) ∈ Is2 , Q3

c(x) ∈ Is3 , etc.,

where si ∈ {0, 1}. Now consider the itinerary of Qc(x). This is the itinerary of the first iterate of x.
Since Qc(x) starts in Is1 , the first sequence in the itinerary S(Qc(x)) is s1. Then, since Q2

c(x) ∈ Is2 ,
the next iterate of Qc(x) lies in the interval Is2 , and thus the next sequence in the itinerary of Qc(x)
is s2. Continuing in this fashion, we have

S(Qc(x)) = (s1s2s3 · · · ) = σ(S(x)),

which proves item 1. In essence, the itinerary map S is constructed to follow the orbit of points
under Qc. So the itinerary of Qc(x) is found by simply ignoring the first element in the itinerary of
x, which is precisely what the shift map σ does.

Proof of 2. This is the hard part. We must show that the itinerary map S is one-to-one, onto,
continuous and has a continuous inverse.

S is one-to-one: Suppose that S(x) = S(y) for some x, y ∈ Λ. By contradiction, suppose that
x 6= y. Without loss of generality, we may assume that x < y and focus our attention on the interval
[x, y].
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Since S(x) = S(y), x and y have the same itineraries, so Qn
c (x) and Qn

c (y) lie in the same
subinterval I0 or I1 for all n. Note that Qc is a one-to-one function on either I0 or I1 (since we only
have less than half the parabola on either of these intervals). Using the fact that the composition of
one-to-one functions is still one-to-one, we know that Qn

c maps [x, y] one-to-one onto [Qn
c (x), Qn

c (y)].
This means that for each n, [Qn

c (x), Qn
c (y)] ⊂ I0 or [Qn

c (x), Qn
c (y)] ⊂ I1 (everything between the

endpoints x and y must map injectively between the endpoints Qn
c (x) and Qn

c (y)). But this means
that the entire interval [x, y] ⊂ Λ, which contradicts the fact that Λ is totally disconnected.

S is onto: For this part we need to use the Nested Interval Theorem:

Theorem 3.1 (Nested Interval Theorem) Suppose In = [an, bn] is a sequence of closed inter-
vals with

I1 ⊃ I2 ⊃ I3 ⊃ · · · ⊃ In ⊃ In+1 ⊃ · · ·

and that lim
n→∞

bn − an = 0. Then, there exists a unique point p ∈ In ∀n. In other words,

∞⋂
n=1

In = {p}.

We also need to use the following notation for preimages of Qc. Let J ⊂ I. Then

Q−1c (J) = {x ∈ I : Qc(x) ∈ J}
= all points that are mapped into J by Qc,

Q−nc (J) = {x ∈ I : Qn
c (x) ∈ J}

= all points that are mapped into J by Qn
c .

Key Fact: If J is a closed interval, then Q−1c (J) is two closed (and smaller) subintervals, one of
which is in I0 and the other of which is in I1 (see Figure 9.6) below.

Suppose that s = (s0s1s2 · · · ) is an arbitrary sequence in Σ2. To show that S is onto, we must
show that there exists an x ∈ Λ such that S(x) = s. We will do this by constructing the point x as
the infinite intersection of closed sets.
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Define

Is0 = {x ∈ I : x ∈ Is0}
Is0s1 = {x ∈ I : x ∈ Is0 and Qc(x) ∈ Is1}

Is0s1s2 = {x ∈ I : x ∈ Is0 , Qc(x) ∈ Is1 , and Q2
c(x) ∈ Is2}

...

Is0s1s2···sn = {x ∈ I : x ∈ Is0 , Qc(x) ∈ Is1 , . . . Qn
c (x) ∈ Isn}

The set Is0s1s2···sn consists of all the points in I whose first n+ 1 entries in their itinerary agree with
the first n + 1 entries of s. For example, if s = (0110 · · · ), then Is0s1s2s3 = I0110 consists of all the
points that start in I0, with their first and second iterates in I1, and third iterate in I0.

This set can be found by repeatedly finding pre-images under Qc and taking their intersection.
Specifically, we have that

Is0s1s2···sn = Is0 ∩ Q−1c (Is1) ∩ Q−2c (Is2) ∩ · · · ∩ Q−nc (Isn),

by definition of Q−jc . This shows that Is0s1s2···sn is a closed set since it is the finite intersection of
closed intervals. Moreover, because of the key fact above, we have

Is0 ⊃ Is0s1 ⊃ Is0s1s2 ⊃ · · · ⊃ Is0s1s2···sn−1 ⊃ Is0s1s2···sn ,

a nested intersection. The length of Is0s1s2···sn is approaching 0 as n → ∞ because Q−nc (Isn) is
a smaller and smaller interval as n → ∞ (Qc is expanding so Q−1c is contracting). Applying the
Nested Interval Theorem, we let

x =
∞⋂
n=0

Is0s1s2···sn .

Then x ∈ Λ because the nth iterate of x under Qc lies in Isn for each n, so the orbit never escapes
through the trapdoor. In addition, we have that S(x) = (s0s1s2 · · · sn · · · ) = s by construction,
since Qn

c (x) ∈ Isn ∀n. This proves that S is onto.

S is continuous: Pick x ∈ Λ and suppose that S(x) = (s0s1s2 · · · sn · · · ) ∈ Σ2. Let ε > 0 be given
and pick n ∈ N such that 1/2n < ε. We must find a δ > 0 such that |x − y| < δ implies that
d(S(x), S(y)) < ε, where d is the standard metric on Σ2.

Since S(x) = (s0s1s2 · · · sn · · · ), x ∈ Is0s1···sn , which is some small, closed set in I. Choose δ
so that if y ∈ Λ and |x − y| < δ, then y ∈ Is0s1···sn as well. This is clearly possible if x is in the
interior of Is0s1···sn , because this is a closed interval with some finite (albeit small) length. We then
choose δ so that the δ-neighborhood about x lies inside Is0s1···sn . If x happens to be an endpoint of
Is0s1···sn (which means it will eventually be fixed at p+ under iteration), then points to one side of x
will eventually escape to ∞, so we only focus on the intersection of a δ-neighborhood about x with
Is0s1···sn . Again, it is possible to choose δ sufficiently small to ensure that this intersection lies within
Is0s1···sn . Thus, if y ∈ Λ and y ∈ Is0s1···sn , then the first n + 1 entries of S(y) will agree with the
first n + 1 entries of S(x). By the Proximity Theorem, this means that d(S(x), S(y)) ≤ 1/2n < ε,
as desired.

S−1 is continuous: This proof is left to you as a HW exercise. :)
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