
Math 374, Dynamical Systems, Spring 2014

Computer Project #3

Computing Feigenbaum’s Constant

DUE DATE: Friday, March 21, 5:00 pm

The goal of the project is to compute a very famous constant discovered by physicist Mitchell
Feigenbaum in 1975 while working at Los Alamos National Laboratory. Although Feigenbaum re-
ceived his doctorate from the Massachusetts Institute of Technology in elementary particle physics,
he was also fairly gifted in mathematics. After hearing a lecture by Field’s medalist Stephen Smale
on period-doubling, Feigenbaum decided to investigate the rate at which the Logistic Map under-
goes a sequence of period-doubling bifurcations en route to chaos. Partly inspired by ideas from
physics involving Renormalization Theory, Feigenbaum, using a simple HP-65 hand-held calculator,
discovered an amazing fact about systems which undergo a series of period-doubling bifurcations
– they all do so at the same rate. This special rate is now known as Feigenbaum’s constant.
Apparently, after predicting his special constant was universal in dynamical systems, he called his
parents and told his mother he was going to be famous. For more information on this interesting
story and to motivate yourself for the project, read the sixth chapter Universality in Gleick’s book
on chaos.

Your aim in this project is to compute as many decimal places of Feigenbaum’s constant as
possible. Fortunately, you get to use a computer (e.g., Maple, C++, etc.) as you go through
the same steps that Feigenbaum undertook himself. You will approximate Feigenbaum’s constant
for three families of dynamical systems, the Quadratic Family Qc(x) = x2 + c, the Logistic Map
Fλ(x) = λx(1 − x) and the Sine Family Sb(x) = b sinx. Whichever lab group computes the most
decimal places wins a prize. Note: You must actually compute the constant. No credit will be
given for simply looking the value up on the Internet or in a book.

It is required that you work in a group of two or three people. Any help you receive from
a source other than your lab partner(s) should be acknowledged in your report. For example, a
textbook, web site, another student, etc. should all be appropriately referenced at the end of your
report. The project should be typed although you do not have to typeset your mathematical
notation. For example, you can leave space for a graph, computations, tables, etc. and then write
it in by hand later. You can also include graphs or computations in an appendix at the end of your
report. Your presentation is important and I should be able to clearly read and understand what
you are saying. Only one project per group need be submitted.

Defining Feigenbaum’s Constant

Suppose that fc is a family of differentiable dynamical systems which undergoes a series of
period-doubling bifurcations. This means that as c is varied continuously, fc has an attracting
periodic point beginning with period 1, then period 2, followed by period 4, 8, 16, 32, . . .. This is
the start of a typical orbit diagram for most of the dynamical systems we have been studying.

Let x0 be a critical point for fc. Define a sequence of parameter values cn by setting cn equal
to the parameter value where x0 is on a periodic orbit of prime period 2n. These are values where

1



the orbit is super-attracting since (f 2n

cn )′(x0) = 0 (by the chain rule). Specifically, define

c0 = c-value where the critical point is on a period 20 = 1 orbit.

c1 = c-value where the critical point is on a period 21 = 2 orbit.

c2 = c-value where the critical point is on a period 22 = 4 orbit.

c3 = c-value where the critical point is on a period 23 = 8 orbit, etc.

Note that there may be more than one possible value of cn for a given n. However, we are only
interested in finding the values that occur in the initial series of period-doubling bifurcations. These
values will be relatively close together. (Other parameter values may be possible further along in
the bifurcation diagram, but we shall ignore these values.)

It is not the particular values of cn that concern us, but the ratio of the difference between
successive values. This is a measure of how fast the period-doubling bifurcations occur. Specifically,
Feigenbaum’s constant is defined to be

K = lim
n→∞

kn where kn =
cn+1 − cn
cn+2 − cn+1

Remarkably, this constant is the same for any dynamical system undergoing a cascade of period-
doubling bifurcations! This was rigorously proven by Collet, Eckmann and Lanford using renor-
malization group analysis [1]. In a certain sense, this special constant is “universal.”

Lab Exercises

The goal of the Lab is to approximate the value of K by computing as many values of the
sequence kn as possible. Obviously this becomes challenging since the period grows exponentially
in n. For example, to find c10 requires finding the c-value for which fc has a super-attracting period
1024 orbit. This is not easy and will require some patience as well as some basic programming
skills.

For each of the systems, Qc(x) = x2+c, Fλ(x) = λx(1−x) and Sb(x) = b sinx, do the following:

1. Compute (at least) the first seven parameter values c0, c1, . . . c6. These should be found to a
high degree of accuracy (at least 10 decimal places.) List these values in a table.

2. Compute (at least) the first five values k0, k1, k2, k3, k4. If you have computed the cn-values
correctly and accurately, you should notice some convergence in your sequence. List these
values in a table.

3. Estimate Feigenbaum’s constant K. (The more values of cn and consequently kn you are able
to compute, the better your estimate will be.)

Of the three dynamical systems, Qc, Fλ and Sb, which has a sequence kn which seems to be
converging the fastest to Feigenbaum’s constant?

Some Hints: First, notice that two of the maps you are investigating are topologically conjugate,
as proved on HW #4. This should help significantly with the computations for one family, as
period-doubling bifurcations are preserved under conjugacy. (Why?)

Second, you should write a while loop in Maple (or some other program) to find the values
of cn to a high degree of accuracy. Recall that to obtain 20 decimal places of accuracy, type

2



Digits := 20 . The suggested numerical algorithm to use is called the Bisection Method, al-
though you may know of a different method to apply. The Bisection Method relies on some common
mathematical sense and the Intermediate Value Theorem. To begin, use the Orbit Diagram java
applet available from the Dynamical Systems and Technology Project website at Boston University
to find a range for the particular c-value in question. This allows you to find an upper bound cu
and lower bound cl for the pertinent c-value, cl < c < cu.

The algorithm proceeds as follows: First check whether the nth iterate of the critical point
x0 comes back below or above itself for your bounds. For example, suppose that fncu(x0) < x0
but fncl(x0) > x0. Set c = (cl + cu)/2 and compute fnc (x0). There are two possible cases, either
fnc (x0) < x0 or fnc (x0) > x0. We explain the case fnc (x0) < x0. The other case is similar.

If fnc (x0) < x0, then the true value of cn must lie between cl (where the critical point returned
above itself) and c (where the critical point returned below itself). The next choice of c, call it ĉ,
should be ĉ = (c+ cl)/2. Keep cl the same, but change the value of cu to c. You have now zoomed
in on the true value by cutting the target range in half (hence the “bisection method”.) The old
range was [cl, cu] and the new one is half that size [cl, c].

Now compute fnĉ (x0) and proceed as before, chopping your target range in half by determining
whether the true value is in [cl, ĉ] or [ĉ, c]. Adjust your bounds accordingly, take the average of your
new bounds and compute the n-th iterate of the critical point again. The nice thing about this
algorithm is that it is easy to obtain error estimates for the true value of cn. We can iterate this
algorithm as many times as needed to obtain the largest degree of accuracy required. Be sure to
choose your initial bounds carefully (and close together), otherwise you may re-discover a parameter
value already on your list.

The above algorithm can be implemented as a while loop in Maple. You will need to insert
a for loop inside the while loop to compute the iteration (see Lab 1). Recall that to skip to the
next line in Maple without executing the command use the shift and return keys together. You
will also need to insert an if then statement to distinguish between the two possible cases of being
above or below the critical point. The syntax for these commands is fairly straight-forward. For
example, your while loop might look like

while flag = 0 do

. . . commands in here . . .

end do;

You can exit the loop by setting flag := 0 after you have executed the bisection algorithm suffi-
ciently long. You don’t have to use a “flag.” This is just a suggestion. The syntax for an if-then
statement looks something like

if (x0 < 0) then

... commands in here ...

else

... commands in here ...

end if;

For more information on these commands, you can type ?while or ?if .
Important: Please turn in a print out of the while loop you use in Maple (or some other

program) to compute the special parameter values cn.

3



References

[1] P. Collet, J.-P. Eckmann and O. E. Lanford. Universal properties of maps on an interval.
Comm. Math. Phys. 76, no. 3, 211-254, 1980.

[2] J. Gleick. Chaos: Making a New Science, Penguin Books, New York, NY, 1987.

4


