Math 374, Dynamical Systems, Spring 2014
 Partial Solutions for HW \#5

Chapter 10, \#20
Prove that the doubling map $D:[0,1) \mapsto[0,1)$ is chaotic, where D is defined as

$$
D(x)=\left\{\begin{array}{cl}
2 x & \text { if } 0 \leq x<1 / 2 \\
2 x-1 & \text { if } 1 / 2 \leq x<1
\end{array}\right.
$$

One way to prove that D is chaotic is to consider the graph of D^{n}. As computed on an earlier homework, the graph of D^{n} consists of 2^{n} parallel line segments of slope 2^{n}, equally spaced over $[0,1)$. The domain of each line segment is a subinterval of the form $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right.$), where $k \in\left\{0,1,2, \ldots, 2^{n}-1\right\}$. The key idea we will use repeatedly is that each interval of the form $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$ is mapped continuously onto $[0,1)$ (see figure for a graph of $D^{3}(x)$).

(b) $D^{3}(x)=8 x \bmod 1$

Periodic Points are Dense in $[0,1)$: Pick an arbitrary $y \in[0,1)$ and let $\epsilon>0$ be given. Choose $n \in \mathbb{N}$ sufficiently large so that $1 / 2^{n}<\epsilon$. Then there exists a k such that $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right) \subset(y-\epsilon, y+\epsilon)$. Since the graph of D^{n} over $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right.$) stretches continuously from 0 to 1 , it intersects the diagonal $y=x$. Thus, there is a solution to $D^{n}(x)=x$ inside the interval $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$ and therefore inside the interval $(y-\epsilon, y+\epsilon)$. This shows that there is a periodic point within ϵ of y, which proves that periodic points are dense.

Topological Transitivity: Let U and V be two arbitrary open sets in $[0,1)$. Since U is open, we can choose $n \in \mathbb{N}$ sufficiently large and choose k appropriately such that $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right) \subset U$. Since the graph of D^{n} over $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$ stretches continuously from 0 to 1 , it not only intersects V, it covers V completely. Thus, since a subset of U covers V, we have that $D^{n}(U) \cap V=V \neq \emptyset$. This proves that D is topologically transitive.

Sensitive Dependence on Initial Conditions: Let $\delta=1 / 2$. Pick an arbitrary $y \in[0,1)$ and let $\epsilon>0$ be given. We will show that there exists an $x \in[0,1)$ within ϵ of y and an $n \in \mathbb{N}$ such that the nth iterates of x and y are at least δ apart.

Once again, choose $n \in \mathbb{N}$ sufficiently large so that $1 / 2^{n}<\epsilon$. It follows that there exists a k such that $y \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right) \subset(y-\epsilon, y+\epsilon)$. Divide the subinterval $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$ in half. If y is in the left half of this subinterval, then $D^{n}(y)<1 / 2$, and we choose x sufficiently close enough to $\frac{k+1}{2^{n}}$ so that $D^{n}(x)$ is sufficiently close to 1 . On the other hand, if y is in the right half of this subinterval, then $D^{n}(y)>1 / 2$, and we choose $x=\frac{k}{2^{n}}$ so that $D^{n}(x)=0$. In either case, $\left|D^{n}(x)-D^{n}(y)\right|>\delta=1 / 2$, as desired.

Note: If y happens to be at the midpoint of the subinterval $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$, then $D^{n}(y)=1 / 2$ and consequently $D^{n+1}(y)=0$. In this case we just choose x slightly to the left of y, and then $D^{n+1}(x)$ is close to 1 and $\left|D^{n+1}(x)-D^{n+1}(y)\right|>\delta=1 / 2$. This completes the proof that D is chaotic.

The other way to prove that D is chaotic is to show that D is conjugate to the shift map σ on Σ_{2}. This can be done using binary expansion. The specific conjugacy is the map that sends $x \in[0,1)$ to the entries in its base 2 expansion. One should check that such a map is actually a homeomorphism (it is). In addition, since SDIC is not actually preserved under homeomorphism and since D is not continuous, one should also prove that D has SDIC, as shown above.

Additional Problem:

Show that the inverse of the itinerary map, S^{-1}, is continuous.
We first recall the definition of S. Suppose $x \in \Lambda$. The itinerary of x is the infinite sequence

$$
S(x)=\left(s_{0} s_{1} s_{2} s_{3} \ldots\right) \quad \text { where } \begin{cases}s_{j}=0 & \text { if } Q_{c}^{j}(x) \in I_{0}, \text { and } \\ s_{j}=1 & \text { if } Q_{c}^{j}(x) \in I_{1} .\end{cases}
$$

The function S^{-1} maps sequences in Σ_{2} back to real numbers in Λ. In other words, $S^{-1}: \Sigma_{2} \mapsto \Lambda$. Given a sequence $s \in \Sigma_{2}, S^{-1}(s)$ is the point in the Cantor set Λ whose itinerary under Q_{c} is s.

Proof: Let $s=\left(s_{0} s_{1} s_{2} \cdots s_{n} \cdots\right) \in \Sigma_{2}$ be an arbitrary sequence and let $\epsilon>0$ be given. Denote $x=S^{-1}(s) \in \Lambda$ as the image of s under S^{-1}. In other words, $S(x)=s$ and the itinerary of $x \in \Lambda$ under Q_{c} is given by s. We must find a $\delta>0$ such that

$$
d(s, t)<\delta \quad \Longrightarrow \quad\left|S^{-1}(s)-S^{-1}(t)\right|<\epsilon
$$

Note that on the left-hand side, the metric being used is d, the distance function on Σ_{2}, while on the right-hand side, the metric used is simply the absolute value function as $S^{-1}(s)$ and $S^{-1}(t)$ are real numbers.

The key to the proof is the special closed interval $I_{s_{0} s_{1} s_{2} \cdots s_{n}}$ used to show that S was onto. Recall that

$$
I_{s_{0} s_{1} s_{2} \cdots s_{n}}=\left\{y \in I: y \in I_{s_{0}}, Q_{c}(y) \in I_{s_{1}}, \ldots, Q_{c}^{n}(y) \in I_{s_{n}}\right\}
$$

The set $I_{s_{0} s_{1} s_{2} \cdots s_{n}}$ consists of all the points in I whose first $n+1$ entries in their itinerary agree with the first $n+1$ entries of s. By definition of $S^{-1}, x \in I_{s_{0} s_{1} s_{2} \cdots s_{n}} \forall n$. This set can be found by repeatedly finding pre-images under Q_{c} and taking their intersection. Specifically, we have that

$$
I_{s_{0} s_{1} s_{2} \cdots s_{n}}=I_{s_{0}} \cap Q_{c}^{-1}\left(I_{s_{1}}\right) \cap Q_{c}^{-2}\left(I_{s_{2}}\right) \cap \cdots \cap Q_{c}^{-n}\left(I_{s_{n}}\right),
$$

by definition of Q_{c}^{-j}. This shows that $I_{s_{0} s_{1} s_{2} \cdots s_{n}}$ is a closed interval since it is the finite intersection of closed intervals. Moreover, we know that the length of $I_{s_{0} s_{1} s_{2} \cdots s_{n}}$ is approaching 0 as $n \rightarrow \infty$ because $Q_{c}^{-n}\left(I_{s_{n}}\right)$ is a smaller and smaller interval as $n \rightarrow \infty\left(Q_{c}\right.$ is expanding so Q_{c}^{-1} is contracting).

Now, choose $n \in \mathbb{N}$ sufficiently large such that $I_{s_{0} s_{1} s_{2} \cdots s_{n}} \subset(x-\epsilon, x+\epsilon)$. This is possible since the intervals $I_{s_{0} s_{1} s_{2} \cdots s_{n}}$ are shrinking. Let $\delta=1 / 2^{n}$. If $d(s, t)<\delta=1 / 2^{n}$, then $s_{i}=t_{i} \forall i \leq n$ by the Proximity Theorem. But this in turn means that $S^{-1}(t) \in I_{s_{0} s_{1} s_{2} \cdots s_{n}}$ since the itinerary of $S^{-1}(t)$ agrees with the itinerary of $x=S^{-1}(s)$ in the first $n+1$ entries. Since $I_{s_{0} s_{1} s_{2} \cdots s_{n}} \subset(x-\epsilon, x+\epsilon)$, we have $S^{-1}(t) \in(x-\epsilon, x+\epsilon)$, which shows

$$
d(s, t)<\delta \quad \Longrightarrow \quad\left|S^{-1}(s)-S^{-1}(t)\right|<\epsilon
$$

as desired.

