## Math 374, Dynamical Systems, Spring 2014 Partial Solutions for HW #5

## Chapter 10, #20

Prove that the doubling map  $D: [0,1) \mapsto [0,1)$  is chaotic, where D is defined as

$$D(x) = \begin{cases} 2x & \text{if } 0 \le x < 1/2\\ 2x - 1 & \text{if } 1/2 \le x < 1. \end{cases}$$

One way to prove that D is chaotic is to consider the graph of  $D^n$ . As computed on an earlier homework, the graph of  $D^n$  consists of  $2^n$  parallel line segments of slope  $2^n$ , equally spaced over [0, 1). The domain of each line segment is a subinterval of the form  $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$ , where  $k \in \{0, 1, 2, \ldots, 2^n - 1\}$ . The key idea we will use repeatedly is that each interval of the form  $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$  is mapped continuously onto [0, 1) (see figure for a graph of  $D^3(x)$ ).



**Periodic Points are Dense in** [0, 1): Pick an arbitrary  $y \in [0, 1)$  and let  $\epsilon > 0$  be given. Choose  $n \in \mathbb{N}$  sufficiently large so that  $1/2^n < \epsilon$ . Then there exists a k such that  $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \subset (y - \epsilon, y + \epsilon)$ . Since the graph of  $D^n$  over  $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$  stretches continuously from 0 to 1, it intersects the diagonal y = x. Thus, there is a solution to  $D^n(x) = x$  inside the interval  $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$  and therefore inside the interval  $(y - \epsilon, y + \epsilon)$ . This shows that there is a periodic point within  $\epsilon$  of y, which proves that periodic points are dense.

**Topological Transitivity:** Let U and V be two arbitrary open sets in [0, 1). Since U is open, we can choose  $n \in \mathbb{N}$  sufficiently large and choose k appropriately such that  $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \subset U$ . Since the graph of  $D^n$  over  $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$  stretches continuously from 0 to 1, it not only intersects V, it covers V completely. Thus, since a subset of U covers V, we have that  $D^n(U) \cap V = V \neq \emptyset$ . This proves that D is topologically transitive.

Sensitive Dependence on Initial Conditions: Let  $\delta = 1/2$ . Pick an arbitrary  $y \in [0, 1)$  and let  $\epsilon > 0$  be given. We will show that there exists an  $x \in [0, 1)$  within  $\epsilon$  of y and an  $n \in \mathbb{N}$  such that the *n*th iterates of x and y are at least  $\delta$  apart.

Once again, choose  $n \in \mathbb{N}$  sufficiently large so that  $1/2^n < \epsilon$ . It follows that there exists a k such that  $y \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right) \subset (y - \epsilon, y + \epsilon)$ . Divide the subinterval  $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right)$  in half. If y is in the left half of this subinterval, then  $D^n(y) < 1/2$ , and we choose x sufficiently close enough to  $\frac{k+1}{2^n}$  so that  $D^n(x)$  is sufficiently close to 1. On the other hand, if y is in the right half of this subinterval, then  $D^n(y) > 1/2$ , and we choose  $x = \frac{k}{2^n}$  so that  $D^n(x) = 0$ . In either case,  $|D^n(x) - D^n(y)| > \delta = 1/2$ , as desired.

Note: If y happens to be at the midpoint of the subinterval  $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right)$ , then  $D^n(y) = 1/2$  and consequently  $D^{n+1}(y) = 0$ . In this case we just choose x slightly to the left of y, and then  $D^{n+1}(x)$  is close to 1 and  $|D^{n+1}(x) - D^{n+1}(y)| > \delta = 1/2$ . This completes the proof that D is chaotic.

The other way to prove that D is chaotic is to show that D is conjugate to the shift map  $\sigma$ on  $\Sigma_2$ . This can be done using binary expansion. The specific conjugacy is the map that sends  $x \in [0, 1)$  to the entries in its base 2 expansion. One should check that such a map is actually a homeomorphism (it is). In addition, since SDIC is not actually preserved under homeomorphism and since D is not continuous, one should also prove that D has SDIC, as shown above.

## Additional Problem:

Show that the inverse of the itinerary map,  $S^{-1}$ , is continuous.

We first recall the definition of S. Suppose  $x \in \Lambda$ . The itinerary of x is the infinite sequence

$$S(x) = (s_0 s_1 s_2 s_3 \dots)$$
 where  $\begin{cases} s_j = 0 & \text{if } Q_c^j(x) \in I_0, \text{ and} \\ s_j = 1 & \text{if } Q_c^j(x) \in I_1. \end{cases}$ 

The function  $S^{-1}$  maps sequences in  $\Sigma_2$  back to real numbers in  $\Lambda$ . In other words,  $S^{-1} : \Sigma_2 \to \Lambda$ . Given a sequence  $s \in \Sigma_2$ ,  $S^{-1}(s)$  is the point in the Cantor set  $\Lambda$  whose itinerary under  $Q_c$  is s.

**Proof:** Let  $s = (s_0 s_1 s_2 \cdots s_n \cdots) \in \Sigma_2$  be an arbitrary sequence and let  $\epsilon > 0$  be given. Denote  $x = S^{-1}(s) \in \Lambda$  as the image of s under  $S^{-1}$ . In other words, S(x) = s and the itinerary of  $x \in \Lambda$  under  $Q_c$  is given by s. We must find a  $\delta > 0$  such that

$$d(s,t) < \delta \implies |S^{-1}(s) - S^{-1}(t)| < \epsilon.$$

Note that on the left-hand side, the metric being used is d, the distance function on  $\Sigma_2$ , while on the right-hand side, the metric used is simply the absolute value function as  $S^{-1}(s)$  and  $S^{-1}(t)$  are real numbers.

The key to the proof is the special closed interval  $I_{s_0s_1s_2\cdots s_n}$  used to show that S was onto. Recall that

$$I_{s_0s_1s_2\cdots s_n} = \{ y \in I : y \in I_{s_0}, \ Q_c(y) \in I_{s_1}, \ \dots \ , Q_c^n(y) \in I_{s_n} \}.$$

The set  $I_{s_0s_1s_2\cdots s_n}$  consists of all the points in I whose first n + 1 entries in their itinerary agree with the first n + 1 entries of s. By definition of  $S^{-1}$ ,  $x \in I_{s_0s_1s_2\cdots s_n} \forall n$ . This set can be found by repeatedly finding pre-images under  $Q_c$  and taking their intersection. Specifically, we have that

$$I_{s_0s_1s_2\cdots s_n} = I_{s_0} \cap Q_c^{-1}(I_{s_1}) \cap Q_c^{-2}(I_{s_2}) \cap \cdots \cap Q_c^{-n}(I_{s_n}),$$

by definition of  $Q_c^{-j}$ . This shows that  $I_{s_0s_1s_2\cdots s_n}$  is a closed interval since it is the finite intersection of closed intervals. Moreover, we know that the length of  $I_{s_0s_1s_2\cdots s_n}$  is approaching 0 as  $n \to \infty$  because  $Q_c^{-n}(I_{s_n})$  is a smaller and smaller interval as  $n \to \infty$  ( $Q_c$  is expanding so  $Q_c^{-1}$  is contracting).

Now, choose  $n \in \mathbb{N}$  sufficiently large such that  $I_{s_0s_1s_2\cdots s_n} \subset (x - \epsilon, x + \epsilon)$ . This is possible since the intervals  $I_{s_0s_1s_2\cdots s_n}$  are shrinking. Let  $\delta = 1/2^n$ . If  $d(s,t) < \delta = 1/2^n$ , then  $s_i = t_i \ \forall i \leq n$  by the Proximity Theorem. But this in turn means that  $S^{-1}(t) \in I_{s_0s_1s_2\cdots s_n}$  since the itinerary of  $S^{-1}(t)$ agrees with the itinerary of  $x = S^{-1}(s)$  in the first n + 1 entries. Since  $I_{s_0s_1s_2\cdots s_n} \subset (x - \epsilon, x + \epsilon)$ , we have  $S^{-1}(t) \in (x - \epsilon, x + \epsilon)$ , which shows

$$d(s,t) < \delta \implies |S^{-1}(s) - S^{-1}(t)| < \epsilon,$$

as desired.