Math 374, Dynamical Systems, Spring 2014
Partial Solutions for HW #5

Chapter 10, #20
Prove that the doubling map D : [0,1) — [0,1) is chaotic, where D is defined as

2 f0<x<1/2
D(z) =

2w —1 if1/2<z<1.

One way to prove that D is chaotic is to consider the graph of D". As computed on an earlier

homework, the graph of D™ consists of 2" parallel line segments of slope 2", equally spaced over [0, 1).

The domain of each line segment is a subinterval of the form [2%, %), where k € {0,1,2,...,2"—1}.

The key idea we will use repeatedly is that each interval of the form [2%, %) is mapped continuously

onto [0, 1) (see figure for a graph of D3(z)).
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(b) D?(z) = 82 mod 1

Periodic Points are Dense in [0,1): Pick an arbitrary y € [0,1) and let € > 0 be given. Choose

n € N sufficiently large so that 1/2" < e. Then there exists a k such that [25, 55) C (y — €,y +¢).

Since the graph of D" over [2%, kjl) stretches continuously from 0 to 1, it intersects the diagonal
ko k+1

y = x. Thus, there is a solution to D"(x) = z inside the interval [5%, %5) and therefore inside the

interval (y — €,y 4+ €). This shows that there is a periodic point within € of y, which proves that
periodic points are dense.

Topological Transitivity: Let U and V be two arbitrary open sets in [0,1). Since U is open, we
can choose n € N sufficiently large and choose k appropriately such that [2%, %) C U. Since the
graph of D™ over [%, %) stretches continuously from 0 to 1, it not only intersects V, it covers V'
completely. Thus, since a subset of U covers V', we have that D"(U) NV =V # (). This proves

that D is topologically transitive.

Sensitive Dependence on Initial Conditions: Let 6 = 1/2. Pick an arbitrary y € [0,1) and let
e > 0 be given. We will show that there exists an x € [0,1) within € of y and an n € N such that
the nth iterates of x and y are at least § apart.



Once again, choose n € N sufficiently large so that 1/2" < e. It follows that there exists a k

such that y € [£,EH) C (y — €,y +€). Divide the subinterval [£, 2E1) in half. If y is in the left

half of this subinterval, then D™(y) < 1/2, and we choose z sufficiently close enough to % so that
D™(z) is sufficiently close to 1. On the other hand, if y is in the right half of this subinterval, then
D"(y) > 1/2, and we choose x = 2 so that D"(z) = 0. In either case, |[D"(z) — D"(y)| > 0 = 1/2,
as desired.

Note: If y happens to be at the midpoint of the subinterval [2, £t1)  then D"(y) = 1/2 and
consequently D" (y) = 0. In this case we just choose z slightly to the left of 3, and then D""!(z)
is close to 1 and |D"*(z) — D" (y)| > § = 1/2. This completes the proof that D is chaotic.

The other way to prove that D is chaotic is to show that D is conjugate to the shift map o
on Y. This can be done using binary expansion. The specific conjugacy is the map that sends
x € [0,1) to the entries in its base 2 expansion. One should check that such a map is actually a
homeomorphism (it is). In addition, since SDIC is not actually preserved under homeomorphism
and since D is not continuous, one should also prove that D has SDIC, as shown above.

Additional Problem:
Show that the inverse of the itinerary map, S—!, is continuous.

We first recall the definition of S. Suppose x € A. The itinerary of x is the infinite sequence

s; =0 if Qi(x) € Iy, and

S(z) = (89818283 .. where .
(@) = (sos1525- ) {sjzling(a;)efl.

The function S~! maps sequences in Yy back to real numbers in A. In other words, S~ : 3y — A.
Given a sequence s € o, S71(s) is the point in the Cantor set A whose itinerary under Q. is s.

Proof: Let s = (8081828, -+) € Xg be an arbitrary sequence and let € > 0 be given. Denote
r = S7!(s) € A as the image of s under S~'. In other words, S(z) = s and the itinerary of z € A
under Q). is given by s. We must find a 6 > 0 such that

d(s,t) < 6 = |S7(s)—S'(t)| < e

Note that on the left-hand side, the metric being used is d, the distance function on 5, while on
the right-hand side, the metric used is simply the absolute value function as S~*(s) and S~'(t) are
real numbers.

The key to the proof is the special closed interval I
that

vs152--s, Used to show that S was onto. Recall

Lipsispsn = ly€lyely, Qy) €1y, ... ,Qu(y) € 1,,}.

The set I s,.s, consists of all the points in I whose first n + 1 entries in their itinerary agree
with the first n + 1 entries of s. By definition of S™!, x € I 4, s,..s, ¥n. This set can be found by
repeatedly finding pre-images under (). and taking their intersection. Specifically, we have that

1808182---% = ISO N le(fm) N Q;2(132) n---nN Q;n(jsn)a

by definition of Q7. This shows that I,q,s,...s, is a closed interval since it is the finite intersection of
closed intervals. Moreover, we know that the length of I s,s,...s, is approaching 0 as n — oo because
Q."(I,,) is a smaller and smaller interval as n — oo (Q. is expanding so Q. ! is contracting).
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Now, choose n € N sufficiently large such that Iy g, s,..s, C (x — €,z + €). This is possible since
the intervals I s,s,...s, are shrinking. Let 6 = 1/2". If d(s,t) < 6 = 1/2", then s; = t; Vi < n by the
Proximity Theorem. But this in turn means that S™(¢) € I 4,5, since the itinerary of S~1(¢)
agrees with the itinerary of x = S7!(s) in the first n + 1 entries. Since Iy s, s,..s, C (T — €, + €),
we have S71(t) € (x — €,z + €), which shows

d(s,t) <6 = |S7M(s)—S7(t)| <e,

as desired.



