
Math 374, Dynamical Systems, Spring 2014

Partial Solutions for HW #5

Chapter 10, #20
Prove that the doubling map D : [0, 1) 7→ [0, 1) is chaotic, where D is defined as

D(x) =

{
2x if 0 ≤ x < 1/2

2x− 1 if 1/2 ≤ x < 1.

One way to prove that D is chaotic is to consider the graph of Dn. As computed on an earlier
homework, the graph of Dn consists of 2n parallel line segments of slope 2n, equally spaced over [0, 1).
The domain of each line segment is a subinterval of the form [ k

2n
, k+1

2n
), where k ∈ {0, 1, 2, . . . , 2n−1}.

The key idea we will use repeatedly is that each interval of the form [ k
2n
, k+1

2n
) is mapped continuously

onto [0, 1) (see figure for a graph of D3(x)).

Periodic Points are Dense in [0, 1): Pick an arbitrary y ∈ [0, 1) and let ε > 0 be given. Choose
n ∈ N sufficiently large so that 1/2n < ε. Then there exists a k such that [ k

2n
, k+1

2n
) ⊂ (y − ε, y + ε).

Since the graph of Dn over [ k
2n
, k+1

2n
) stretches continuously from 0 to 1, it intersects the diagonal

y = x. Thus, there is a solution to Dn(x) = x inside the interval [ k
2n
, k+1

2n
) and therefore inside the

interval (y − ε, y + ε). This shows that there is a periodic point within ε of y, which proves that
periodic points are dense.

Topological Transitivity: Let U and V be two arbitrary open sets in [0, 1). Since U is open, we
can choose n ∈ N sufficiently large and choose k appropriately such that [ k

2n
, k+1

2n
) ⊂ U . Since the

graph of Dn over [ k
2n
, k+1

2n
) stretches continuously from 0 to 1, it not only intersects V , it covers V

completely. Thus, since a subset of U covers V , we have that Dn(U) ∩ V = V 6= ∅. This proves
that D is topologically transitive.

Sensitive Dependence on Initial Conditions: Let δ = 1/2. Pick an arbitrary y ∈ [0, 1) and let
ε > 0 be given. We will show that there exists an x ∈ [0, 1) within ε of y and an n ∈ N such that
the nth iterates of x and y are at least δ apart.
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Once again, choose n ∈ N sufficiently large so that 1/2n < ε. It follows that there exists a k
such that y ∈ [ k

2n
, k+1

2n
) ⊂ (y − ε, y + ε). Divide the subinterval [ k

2n
, k+1

2n
) in half. If y is in the left

half of this subinterval, then Dn(y) < 1/2, and we choose x sufficiently close enough to k+1
2n

so that
Dn(x) is sufficiently close to 1. On the other hand, if y is in the right half of this subinterval, then
Dn(y) > 1/2, and we choose x = k

2n
so that Dn(x) = 0. In either case, |Dn(x)−Dn(y)| > δ = 1/2,

as desired.
Note: If y happens to be at the midpoint of the subinterval [ k

2n
, k+1

2n
), then Dn(y) = 1/2 and

consequently Dn+1(y) = 0. In this case we just choose x slightly to the left of y, and then Dn+1(x)
is close to 1 and |Dn+1(x)−Dn+1(y)| > δ = 1/2. This completes the proof that D is chaotic.

The other way to prove that D is chaotic is to show that D is conjugate to the shift map σ
on Σ2. This can be done using binary expansion. The specific conjugacy is the map that sends
x ∈ [0, 1) to the entries in its base 2 expansion. One should check that such a map is actually a
homeomorphism (it is). In addition, since SDIC is not actually preserved under homeomorphism
and since D is not continuous, one should also prove that D has SDIC, as shown above.

Additional Problem:
Show that the inverse of the itinerary map, S−1, is continuous.

We first recall the definition of S. Suppose x ∈ Λ. The itinerary of x is the infinite sequence

S(x) = (s0s1s2s3 . . .) where

{
sj = 0 if Qj

c(x) ∈ I0, and

sj = 1 if Qj
c(x) ∈ I1.

The function S−1 maps sequences in Σ2 back to real numbers in Λ. In other words, S−1 : Σ2 7→ Λ.
Given a sequence s ∈ Σ2, S

−1(s) is the point in the Cantor set Λ whose itinerary under Qc is s.

Proof: Let s = (s0s1s2 · · · sn · · · ) ∈ Σ2 be an arbitrary sequence and let ε > 0 be given. Denote
x = S−1(s) ∈ Λ as the image of s under S−1. In other words, S(x) = s and the itinerary of x ∈ Λ
under Qc is given by s. We must find a δ > 0 such that

d(s, t) < δ =⇒ |S−1(s)− S−1(t)| < ε.

Note that on the left-hand side, the metric being used is d, the distance function on Σ2, while on
the right-hand side, the metric used is simply the absolute value function as S−1(s) and S−1(t) are
real numbers.

The key to the proof is the special closed interval Is0s1s2···sn used to show that S was onto. Recall
that

Is0s1s2···sn = {y ∈ I : y ∈ Is0 , Qc(y) ∈ Is1 , . . . , Qn
c (y) ∈ Isn}.

The set Is0s1s2···sn consists of all the points in I whose first n + 1 entries in their itinerary agree
with the first n + 1 entries of s. By definition of S−1, x ∈ Is0s1s2···sn ∀n. This set can be found by
repeatedly finding pre-images under Qc and taking their intersection. Specifically, we have that

Is0s1s2···sn = Is0 ∩ Q−1
c (Is1) ∩ Q−2

c (Is2) ∩ · · · ∩ Q−n
c (Isn),

by definition of Q−j
c . This shows that Is0s1s2···sn is a closed interval since it is the finite intersection of

closed intervals. Moreover, we know that the length of Is0s1s2···sn is approaching 0 as n→∞ because
Q−n

c (Isn) is a smaller and smaller interval as n→∞ (Qc is expanding so Q−1
c is contracting).

2



Now, choose n ∈ N sufficiently large such that Is0s1s2···sn ⊂ (x− ε, x + ε). This is possible since
the intervals Is0s1s2···sn are shrinking. Let δ = 1/2n. If d(s, t) < δ = 1/2n, then si = ti ∀i ≤ n by the
Proximity Theorem. But this in turn means that S−1(t) ∈ Is0s1s2···sn since the itinerary of S−1(t)
agrees with the itinerary of x = S−1(s) in the first n + 1 entries. Since Is0s1s2···sn ⊂ (x − ε, x + ε),
we have S−1(t) ∈ (x− ε, x+ ε), which shows

d(s, t) < δ =⇒ |S−1(s)− S−1(t)| < ε,

as desired.
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