$$\begin{split} &<\frac{1}{2}\sum_{i=0}^{\infty}\frac{|s_i-t_i|}{2^i}\\ &=\frac{1}{2}d[\mathbf{s},\mathbf{t}]. \end{split}$$

Therefore,

$$d[G(\mathbf{s}),G(\mathbf{t})] < \frac{1}{2}d[\mathbf{s},\mathbf{t}] < \frac{1}{2}\delta = \frac{1}{2^n} < \epsilon$$

upon choosing appropriate values for n and δ .

18c)
$$H(s_0s_1s_2...) = (s_1s_0s_3s_2s_5s_4...).$$

Suppose s and t are such that $s_{2k+1} \neq t_{2k+1}$ and $s_{2k} = t_{2k}$ for all k. In other words, s and t differ with respect to every other entry starting with s_1 and t_1 . Then

$$d[H(\mathbf{s}), H(\mathbf{t})] = \sum_{i=0}^{\infty} \frac{|s_{2i+1} - t_{2i+1}|}{2^{2i}}$$
$$= 2 \sum_{i=0}^{\infty} \frac{|s_{2i+1} - t_{2i+1}|}{2^{2i+1}}$$
$$= 2d[\mathbf{s}, \mathbf{t}].$$

For example, let s = (000...) and $t = (\overline{01})$. Then H(s) = s and $H(t) = (\overline{10})$, and so we have

$$\frac{4}{3} = d[H(\mathbf{s}), H(\mathbf{t})] = 2d[\mathbf{s}, \mathbf{t}] = 2 \cdot \frac{2}{3} = \frac{4}{3}.$$

Now suppose $s_{2k} \neq t_{2k}$ and $s_{2k+1} = t_{2k+1}$ for all k. These symbol sequences still differ with respect to every other entry, but offset by one position. In this case,

$$d[H(\mathbf{s}), H(\mathbf{t})] = \sum_{i=0}^{\infty} \frac{|s_{2i} - t_{2i}|}{2^{2i+1}}$$
$$= \frac{1}{2} \sum_{i=0}^{\infty} \frac{|s_{2i} - t_{2i}|}{2^{2i}}$$
$$= \frac{1}{2} d[\mathbf{s}, \mathbf{t}].$$

Now, the claim is that for $s, t \in \Sigma$,

$$\frac{1}{2}d[\mathbf{s}, \mathbf{t}] \le d[H(\mathbf{s}), H(\mathbf{t})] \le 2d[\mathbf{s}, \mathbf{t}]. \tag{9.3}$$

If you believe this, then the continuity of H follows almost immediately. As usual, let $\epsilon > 0$ be given, and choose n so that $1/2^n < \epsilon$. Then let $\delta = 1/2^{n+1}$ and suppose $d[s,t] < \delta$. But $d[H(s), H(t)] \le 2d[s,t]$ by (9.3), and moreover,

$$2d[\mathbf{s}, \mathbf{t}] < 2\delta = 1/2^n < \epsilon.$$

Thus $d[H(s), H(t)] < \epsilon$ and so H is continuous.

18d) $J(s_0s_1s_2...) = (\hat{s}_0\hat{s}_1\hat{s}_2...)$ where $\hat{s}_j = 1$ if $s_j = 0$, and $\hat{s}_j = 0$ if $s_j = 1$.

We claim that $d[J(\mathbf{s}), J(\mathbf{t})] = d[\mathbf{s}, \mathbf{t}]$. This is because $|s_j - t_j| = |\hat{s}_j - \hat{t}_j|$ which is easily seen by enumerating all possible cases (of which there are only four). The proof that J is continuous is immediate. Just choose $\delta = \epsilon$.

18e) $K(s_0s_1s_2...) = ((1-s_0)(1-s_1)(1-s_2)...)$

We remark that the mapping K makes sense only if we think of the s_i as binary digits (which they aren't!). In this context, K = J of Exercise 18d and so K is continuous since J is.

18f) $L(s_0s_1s_2...) = (s_0s_2s_4s_6...).$

The trick here is to pick δ small enough so that s and t agree on the first 2n+1 entries.

As always, let $\epsilon > 0$ be given and choose n so that $1/2^n < \epsilon$. Now let $\delta = 1/2^{2n}$ and suppose $d[s, t] < \delta$. Then by the Proximity Theorem, $s_i = t_i$ for $i = 0, 1, \ldots, 2n$, and so,

$$d[L(s), L(t)] = \sum_{i=n+1}^{\infty} \frac{|s_{2i} - t_{2i}|}{2^i}$$

$$\leq \sum_{i=n+1}^{\infty} \frac{1}{2^i}$$

$$= \frac{1/2^{n+1}}{1 - 1/2}$$

$$= \frac{1}{2^n} < \epsilon.$$