12. How many fixed points does σ_N have? How many 2-cycles? How many cycles of prime period 2?

Let σ_N be the shift map on Σ_N . Specifically, let $\sigma_N : \Sigma_N \to \Sigma_N$ with

$$\sigma_N(s_0s_1s_2\ldots) = (s_1s_2s_3\ldots).$$

Now σ_N has N fixed points; indeed,

$$\text{fix } \sigma_N = \{(000...), (111...), ..., (kkk...)\}$$

where k = N - 1. Recall that σ_2 has two points of prime period 2 and we wonder if σ_N has N points of prime period 2. It turns out that this is not the case since any sequence of the form $(\overline{s_0s_1})$ is of period 2, and there are N^2 such points. But N of these are fixed, and so there are $N^2 - N = N(N-1)$ points of prime period 2.