One of the two points midway between
$$(\overline{0})$$
 and $(\overline{1})$ is $(0\overline{1})$ since $d[(0\overline{1}), (\overline{0})] = d[(0\overline{1}), (\overline{1})] = 1$. The other point is $(1\overline{0})$, and these are the only such symbol sequences by virtue of the Proximity Theorem.

7. Let $M_{01} = \{s \in \Sigma \mid s_0 = 0, s_1 = 1\}$ and $M_{101} = \{s \in \Sigma \mid s_0 = 1, s_1 = 0, s_2 = 1\}$. What is the minimum distance between a point in M_{01} and a point in M_{101} ? Give an example of two sequences that are this close to each other.

Let $s \in M_{01}$ and $t \in M_{101}$. Then $d[s,t] \geq 3/2$ since s and t differ in the first two positions. For example, let $s = (01\overline{1})$ and $t = (10\overline{1})$. Then $d[s,t] = 3/2$. More generally, suppose $t = (101t_3t_4...)$. Then $s = (011t_3t_4...)$ is exactly $3/2$ units away from t .

8. What is the maximum distance between a point in M_{01} and a point in M_{101} ? Give an example of two sequences that are this far apart.

The maximum distance is 2 units since the strings need not agree at any position. Given any $t \in M_{101}$, all strings in M_{01} of the form $(010\hat{t}_3\hat{t}_4...)$ are 2 units away from t .

The N -Shift:

The following seven exercises deal with the analogue of the shift map and sequence space for sequences that have more than two possible entries, the

6. Give an example of a sequence midway between (000...) and (111...).

Give a second such example. Are there any other such points? Why or why

not?

space of sequences of N symbols.

 $\geq \sum_{i=0}^{\infty} \frac{|s_i - u_i|}{N^i}$ $= d_N[\mathbf{s}, \mathbf{u}].$ Thus d_N is a metric and (d_N, Σ_N) is a metric space. 11. What is the maximal distance between a pair of sequences in Σ_N ? The maximum value of $|s_i - t_i|$ is N - 1, and therefore, the maximum

 $d_N[\mathbf{s}, \mathbf{t}] + d_N[\mathbf{t}, \mathbf{u}] = \sum_{i=1}^{\infty} \frac{|s_i - t_i|}{N^i} + \sum_{i=1}^{\infty} \frac{|t_i - u_i|}{N^i}$

 $=\sum_{i=0}^{\infty}\frac{|s_i-t_i|+|t_i-u_i|}{N^i}$

distance between two sequences in Σ_N is $d_N[\mathbf{s}, \mathbf{t}] = \sum_{i=1}^{\infty} \frac{|s_i - t_i|}{N^i}$ $\leq \sum_{i=0}^{\infty} \frac{N-1}{N^i}$

 $=(N-1)\frac{1}{1-1/N}$ = N.

So, in general, the maximum distance can be no more than the size of the alphabet.