
MATH 374 Dynamical Systems

Exam #1 SOLUTIONS February 27, 2014 Prof. G. Roberts

1. The Attracting Fixed Point Theorem (12 pts.)

(a) Precisely state the Attracting Fixed Point Theorem.

Answer: Suppose that f is a C1 function (differentiable with a continuous derivative)
and that x0 is an attracting fixed point for f , that is, f(x0) = x0 and |f ′(x0)| < 1. Then
there exists an open interval I containing x0 such that for any x ∈ I, fn(x) ∈ I ∀n ∈ N,
and

lim
n→∞

fn(x) = x0.

(b) What important theorem from calculus is used to prove the Attracting Fixed Point The-
orem? (You do not need to prove the theorem.)

Answer: Mean Value Theorem

2. Fill-in the Blanks/Multiple Choice (20 pts.)

(a) The quadratic family Qc(x) = x2 + c undergoes a period-doubling bifurcation at
c = −3/4 or −5/4.

(b) The name of the scientist who first noticed the Butterfly Effect while modeling the
weather is Edward Lorenz.

(c) Suppose that F (x) is a differentiable function with F (p) = p, F ′(p) = 1, F ′′(p) = 0 and
F ′′′(p) < 0. Which one of the following is correct?

(i) p is a weakly attracting fixed point.

(ii) p is a weakly repelling fixed point.

(iii) To the left, p repels nearby points under iteration, but to the right, p attracts
nearby points under iteration.

(iv) To the left, p attracts nearby points under iteration, but to the right, p repels
nearby points under iteration.

(v) Not enough information to determine the fate of orbits near p.

Answer: (i), p is a weakly attracting fixed point. Since F ′′′(p) < 0, we know that F ′′

is a decreasing function at p. Since F ′′(p) = 0, we know that F ′′(x) > 0 for x < p and
F ′′(x) < 0 for x > p. Thus, F is concave up to the left of p, concave down to the right
of p and has an inflection point at p where F is tangent to the diagonal y = x. Thus the
graph of F will cross the diagonal from above, and using graphical analysis, we see that
p is a weakly attracting fixed point. It is “weakly” attracting because F ′(p) = 1.

(d) Suppose that f(x) and g(x) are differentiable functions with f(p) = p, f ′(p) = 0.3,
g(p) = p and g′(p) = −0.3. Which one of the following is correct?

(i) p is an attracting fixed point for both functions, and nearby orbits converge to p
faster for f than they do for g.

(ii) p is an attracting fixed point for both functions, and nearby orbits converge to p
faster for g than they do for f .

(iii) p is an attracting fixed point for both functions, and nearby orbits converge to p at
the same rate for each function, but orbits will oscillate about the fixed point for g.



(iv) p is an attracting fixed point for f and a repelling fixed point for g.

(v) p is a repelling fixed point for both functions.

Answer: (iii). This question was a review of material from the first computer lab. It is
the absolute value of the derivative at the fixed point that controls the rate of convergence
to the fixed point. The negative sign causes the orbit to oscillate about the fixed point
as it approaches, as can be seen from a web diagram.

3. Use an accurate web diagram, graphical analysis, and calculus to perform a complete orbit
analysis of the function

F (x) = 2x(1− x) .

Be sure to describe the fate of all orbits, being as precise as possible. List any attracting and
repelling fixed points or cycles, asymptotic orbits, orbits heading towards +∞ or −∞, etc.
(18 pts.)

Answer:

The graph of F is a parabola opening down with roots at 0 and 1, and vertex at the point
(1/2, 1/2) (see figure and web diagram below). Solving F (x) = x for the fixed points gives
2x(1 − x) = x. This implies that x = 0 or 2(1 − x) = 1. The last equation yields x = 1/2.
We also have that F ′(x) = 2 − 4x. Since F ′(0) = 2, x0 = 0 is a repelling fixed point. Since
F ′(1/2) = 0, x0 = 1/2 is a super-attracting fixed point. This can also be seen from the web
diagram.

If 0 < x0 < 1, then the orbit of x0 rapidly approaches the super-attracting fixed point at 1/2.
In the case where 1/2 < x0 < 1, the first iterate maps into the interval (0, 1/2) and then
remains in this interval as the orbit asymptotically (and monotonically) approaches 1/2. The
boundary point x0 = 1 is eventually fixed (after one iterate) on the repelling fixed point at 0.
If x0 > 1, the first iterate is less than zero and the orbit approaches negative infinity. If
x0 < 0, the orbit approaches negative infinity as well. Note that we have analyzed the fate of
all orbits, so it follows that there are no periodic cycles of any period other than 1 (the fixed
points).



4. The Tripling Map T : [0, 1) 7→ [0, 1) is given by T (x) = 3x mod 1. This is equivalent to the
piecewise linear function

T (x) =


3x if 0 ≤ x < 1/3

3x− 1 if 1/3 ≤ x < 2/3
3x− 2 if 2/3 ≤ x < 1

(a) Sketch the graphs of T (x) and T 2(x) on the interval [0, 1). (8 pts.)

Answer:

Figure 1: The graphs of T (x) (left) and T 2(x) (right).

(b) Find one prime period 2-cycle for T and classify it as attracting, repelling or neutral.
(4 pts.)

Answer: To find a period 2-cycle, we must solve T 2(x) = x. Using the graph of T 2

above, there are eight solutions, although two of these correspond to the fixed points 0
and 1/2. For example, the second line segment in the graph of T 2(x) is 9x− 1. Solving
9x− 1 = x yields x = 1/8. Then, we check that T (1/8) = 3/8 and T (3/8) = 1/8, so that
{1/8, 3/8} is a period 2-cycle. Similarly 9x−2 = x yields x = 1/4 and the period 2-cycle
{1/4, 3/4}. The final period 2-cycle is {5/8, 7/8}, which comes from solving 9x− 5 = x
or 9x− 7 = x. Each of these cycles is repelling since (T 2)′(x) = 9 > 1 on its domain.

5. The orbit of x0 = 1 under iteration of the function

G(x) =

{
3x2 + 5 if x < 1.5

1
2
x if x ≥ 1.5

lies on a periodic cycle. Find this cycle and determine whether it is attracting, repelling or
neutral. (10 pts.)

Answer: We compute G(1) = 8, G(8) = 4, G(4) = 2, G(2) = 1, so that x0 = 1 is on a period
4-cycle {1, 8, 4, 2, 1, 8, 4, 2, . . .}. To check the stability type of this orbit we use the chain rule:∣∣(G4)′(1)

∣∣ = |G′(1) ·G′(8) ·G′(4) ·G′(2)| =

∣∣∣∣6 · 1

2
· 1

2
· 1

2

∣∣∣∣ =
3

4
.

Since |(G4)′(1)| < 1, the period 4-cycle is attracting.



6. Consider the one-parameter family of dynamical systems given by

Fc(x) = x2 + cx

where c ∈ R is a parameter. (28 pts.)

(a) Find the fixed points of Fc.

Answer: Solving Fc(x) = x yields the equation x2 + cx = x or x2 + x(c − 1) = 0.
Factoring, we obtain x(x+c−1) = 0, so the fixed points are x0 = 0 and x1 = 1−c. Note
how much easier it is to factor than use the quadratic formula. Also note that there are
two fixed points for all c ∈ R, except for c = 1 where x0 = x1 = 0 is a double root of
F1(x)− x.

(b) Determine the values of c for which each fixed point is attracting.

Answer: We compute that F ′c(x) = 2x + c so that |F ′c(0)| = |c| < 1 if and only if
−1 < c < 1. Similarly, we have that |F ′c(1− c)| = |2(1− c) + c| = |2− c| < 1 if and only
if 1 < c < 3. Therefore, x0 = 0 is attracting for −1 < c < 1, and x1 = 1− c is attracting
for 1 < c < 3.

(c) Find the period 2-cycle for F−3 (when c = −3).

Answer: First we compute F 2
−3(x), then we must solve F 2

−3(x) = x, eliminating the two
fixed point solutions x0 = 0 and x1 = 1− (−3) = 4. We have

F 2
−3(x) = (x2 − 3x)2 − 3(x2 − 3x) = x4 − 6x3 + 6x2 + 9x.

This means F 2
−3(x) = x is equivalent to x4 − 6x3 + 6x2 + 8x = 0. Since x0 = 0 and

x1 = 4 are each roots of this equation (as fixed points for c = −3), we know that
x(x− 4) = x2 − 4x is a factor of this quartic. By guess and check (or long division!), we
see that

x4 − 6x3 + 6x2 + 8x = (x2 − 4x)(x2 − 2x− 2),

so the period 2-cycle is found by solving the quadratic equation x2 − 2x− 2 = 0. Using
the quadratic formula, we obtain the solution

2±
√

12

2
= 1±

√
3 .

(d) Describe the bifurcation that occurs at c = 1. Be sure to describe the dynamical behavior
for c < 1, c = 1 and c > 1.

Answer: Using our solution to parts (a) and (b), we see that for c < 1 (but close
to 1), the fixed point at x0 = 0 is attracting, while the fixed point at x1 = 1 − c is
repelling. At the bifurcation c = 1, the two fixed points merge into a neutral fixed point
at 0 with slope F ′1(0) = 1. This neutral fixed point weakly attracts from the left, and
weakly repels to the right (via web diagram). After the bifurcation, for c > 1, the fixed
points have interchanged their stability types, with x0 = 0 now becoming repelling and
x1 = 1 − c now becoming attracting. In summary, the fixed points x0 and x1 merge at
the bifurcation and interchange their stability types.

Note: This is neither a saddle-node bifurcation nor a period-doubling bifurcation. It is
not a saddle-node bifurcation because no new fixed points are born after the bifurcation.
It also fails to satisfy the condition (at c = 1)

∂

∂c
(Fc(x)) (x0 = 0) 6= 0.



It is not a period-doubling bifurcation because the slope at the neutral fixed point is 1
rather than−1. A bifurcation diagram of this family is shown below. Note the bifurcation
at c = 1 as well as the period-doubling bifurcations at c = −1 and c = 3, respectively,
where x0 = 0 (x1 = −2, respectively) have slopes of −1.
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Figure 2: The bifurcation diagram for the family Fc(x) = x2 + cx. Solid lines or curves indicate
attracting cycles; dashed lines indicate repellers.


