Exercise 5.4d that fix  $S_1 = \{0\}$  and that the origin is weakly attracting; see also Exercise 4.1g. Indeed, the fact that  $S_1'(0) = 1$  implies that x = 0 undergoes a saddle-node bifurcation at  $\mu = 1$ . Moreover, since  $S_{\mu}'(0) = \mu$ , the origin is attracting for  $-1 < \mu < 1$  and repelling for  $|\mu| > 1$ .

## 1f) $S_{\mu}(x) = \mu \sin x$ , $\mu = -1$ (see Figure 6.3b)

Since  $S'_{-1}(0) = -1$ , it appears that  $S_{\mu}$  undergoes a period-doubling bifurcation at  $\mu = -1$ . We remark that for  $\mu < -1$ ,  $S_{\mu}$  has an attracting 2-cycle.

The reader may wonder if there other bifurcation points for  $S_{\mu}$ , and if so, what are they? We begin to answer this question below.

Since bifurcations occur at neutral fixed points, what we need to do is solve the equations

$$\mu \sin x = x \tag{6.1}$$

and

$$\mu\cos x = \pm 1 \tag{6.2}$$

simultaneously. Now, if we divide (6.1) by (6.2), we get

$$\tan x = \pm x$$

for  $\mu \neq 0$ . (The tangent function was cursorily examined earlier in Exercise 5.4e.) In other words, the bifurcation points of  $S_{\mu}$  are the fixed points and 2-cycles of  $x \mapsto \tan x$ .

## 1h) $E_{\lambda}(x) = \lambda(e^x - 1), \quad \lambda = -1$

Note that  $E_{\lambda}(0) = 0$  and so  $0 \in \text{fix } E_{\lambda}$ . Also note that  $E'_{\lambda}(x) = \lambda e^x = E_{\lambda}(x) + \lambda$ . Thus,  $E'_{\lambda}(0) = \lambda$ . Therefore, the origin is attracting for  $|\lambda| < 1$  and repelling for  $|\lambda| > 1$ . When  $\lambda = -1$ ,  $E_{\lambda}$  undergoes a period-doubling bifurcation since  $E_{-1}(0) = -1$ . See Figure 6.4.

1i) 
$$E_{\lambda}(x) = \lambda(e^x - 1), \quad \lambda = 1$$

We have from the previous problem that  $E'_{\lambda}(x) = E_{\lambda}(x) + \lambda$ . It follows that  $E_1(0) = 1$  which shows there's a saddle-node bifurcation at  $\lambda = 1$ . See Figure 6.4 for the graph of  $E_1$ .

1j) 
$$H_c(x) = x + cx^2$$
,  $c = 0$ 



Figure 6.4: Two examples from the exponential family  $E_{\lambda}(x) = \lambda(e^x - 1)$ .



Figure 6.5: Every member of the family  $H_c(x) = x + cx^2$  has a neutral fixed point.

<sup>&</sup>lt;sup>1</sup>Recall that tangent is an odd function, and that the 2-cycles of an odd function F are solutions to the equation F(x) = -x.