Exercise 19

16

16. Sketch the graphs of T and T^2 .

See Figure 3.8 for the graph of T, and Figure 3.9a for the graph of T^2 .

17. Find all fixed points for T and T^2 .

To find the fixed points for T, simply set each piece of T(x) equal to x and solve:

$$2x = x$$

$$\Rightarrow 2x - x = 0$$

$$\Rightarrow 2 = 3x$$

$$\Rightarrow x = 0$$

$$\Rightarrow 2/3 = x$$

Check:

$$T(0) = 0$$
 \checkmark $T(2/3) = 2 - 2(2/3) = 2 - 4/3 = 2/3$ \checkmark

Now set each piece of T^2 equal to x and solve:

$$4x = x$$

$$\Rightarrow 3x = 0$$

$$\Rightarrow x = 0$$

$$\Rightarrow 2 = 5x$$

$$\Rightarrow 2/5 = x$$

$$-2 + 4x = x$$

$$\Rightarrow 3x = 2$$

$$\Rightarrow x = 2/3$$

$$\Rightarrow 4/5 = x$$

Check:

$$T(2/5) = 2(2/5) = 4/5$$
 \checkmark $T(4/5) = 2 - 2(4/5) = 2 - 8/5 = 2/5$ \checkmark

The other two are actually fixed points for T and were checked above.

18. Find an explicit formula for $T^3(x)$ and sketch the graph of T^3 .

Half of the eight cases are worked out in detail below.

$$0 \le x \le 1/8 \Rightarrow 0 \le T(x) \le 1/4 \text{ and } 0 \le T^{2}(x) \le 1/2$$

$$\Rightarrow T^{3}(x) = T(T^{2}(x))$$

$$= T(4x)$$

$$= 2(4x)$$

$$= 8x$$

$$1/8 \le x \le 1/4 \Rightarrow 1/4 \le T(x) \le 1/2 \text{ and } 1/2 \le T^{2}(x) \le 1$$

$$\Rightarrow T^{3}(x) = T(T^{2}(x))$$

$$= T(4x)$$

$$= 2 - 2(4x)$$

$$= 2 - 8x$$

$$1/4 \le x \le 3/8 \Rightarrow 1/2 \le T(x) \le 3/4 \text{ and } 1/2 \le T^{2}(x) \le 1$$

$$\Rightarrow T^{3}(x) = T(T^{2}(x))$$

$$= T(2 - 4x)$$

$$= 2 - 2(2 - 4x)$$

$$= 2 - 2 + 8x$$

$$3/8 \le x \le 1/2 \Rightarrow 3/4 \le T(x) \le 1 \text{ and } 0 \le T^{2}(x) \le 1/2$$

$$\Rightarrow T^{3}(x) = T(T^{2}(x))$$

$$= T(2 - 4x)$$

$$= T(2 - 4x)$$

$$= 2(2 - 4x)$$

$$= 2(2 - 4x)$$

$$= 4 - 8x$$

The student should complete the remaining four cases. Ultimately, we get the following monstrous expression for $T^3(x)$:

$$T^{3}(x) = \begin{cases} 8x & \text{if } 0 \le x < 1/8 \\ 2 - 8x & \text{if } 1/8 \le x < 1/4 \\ 8x - 2 & \text{if } 1/4 \le x < 3/8 \\ 4 - 8x & \text{if } 3/8 \le x < 1/2 \\ 8x - 4 & \text{if } 1/2 \le x < 5/8 \\ 6 - 8x & \text{if } 5/8 \le x < 3/4 \\ 8x - 6 & \text{if } 3/4 \le x < 7/8 \\ 8 - 8x & \text{if } 7/8 \le x < 1 \end{cases}$$

Notice how every other piece of this multi-part function agrees exactly with the corresponding piece of $D^3(x)$ computed in Exercise 12 (see Equation 3.2). See Figure 3.9b for the graph of T^3 .

19. What does the graph of T^n look like?