Math 374, Dynamical Systems, Spring 2014 The Quadratic Map Q_c is Topologically Conjugate to the Shift Map σ

1 The Set Up

Recall that $Q_c(x) = x^2 + c$ is the quadratic map and that $p_+ = \frac{1}{2}(1 + \sqrt{1 - 4c})$ is the larger of the two fixed points. If c < -2, a symmetrical piece of the bottom of the graph of Q_c lies outside the square with vertices $(p_+, p_+), (-p_+, p_+), (-p_+, -p_+)$ and $(p_+, -p_+)$. This follows because $Q_c(0) = c < -p_+$ for c < -2.

The point $-p_+$ maps to p_+ on the first iterate and is thus eventually fixed. There are two pre-images of $-p_+$, denoted α and $-\alpha$, which are eventually fixed at p_+ after two iterates. We compute that $\alpha = \sqrt{-c - p_+}$, which is real because $c < -p_+$. The open interval $A_1 = (-\alpha, \alpha)$ maps below $-p_+$ on the first iterate, then above p_+ on the next iterate, and then off to infinity as n gets larger. Consequently, we think of A_1 as the trapdoor; any point whose orbit eventually lands in A_1 will escape to ∞ .

Let us define the following important closed intervals:

$$I = [-p_+, p_+]$$

 $I_0 = [-p_+, -\alpha]$
 $I_1 = [\alpha, p_+]$

Note that $I = I_0 \cup A_1 \cup I_1$. The open interval A_1 and all of its pre-images A_n contain all the points that escape to ∞ . The sum of the length of these intervals equals the length of I. We are interested in the set of points Λ that remain in I under iteration of Q_c . As discussed in class,

$$\Lambda = \{x \in I : Q_c^n(x) \in I \ \forall n\}$$

is a Cantor set — a nonempty, closed and totally disconnected set.

2 The Itinerary Map

Definition 2.1 (The Itinerary Map) Suppose $x \in I$. The <u>itinerary</u> of x is the infinite sequence

$$S(x) = (s_0 s_1 s_2 s_3 ...)$$
 where
$$\begin{cases} s_j = 0 & \text{if } Q_c^j(x) \in I_0, \text{ and} \\ s_j = 1 & \text{if } Q_c^j(x) \in I_1. \end{cases}$$

Here, we define $Q_c^0(x) = x$, so that s_0 reveals which interval x starts in. Since $x \in \Lambda$, we know that every iterate will stay in I and can never land in A_1 . Thus, $Q_c^j(x)$ is always in either I_0 or I_1 for any j. This means that the sequence defined by the itinerary map will be an infinite sequence of 0's and 1's. In other words, S is function from Λ to Σ_2 , the space of sequences of 0's and 1's. The reason that S is called the *itinerary map* is that each entry in the sequence S(x) will tell us whether the corresponding iterate of x is to the left of the trapdoor (0) or to the right (1).

Example 2.2 The following itineraries can be calculated easily with a good web diagram:

$$S(p_{+}) = (11111 \cdots)$$

 $S(-p_{+}) = (01111 \cdots)$
 $S(\alpha) = (10111 \cdots)$
 $S(-\alpha) = (00111 \cdots)$
 $S(p_{-}) = (00000 \cdots)$

Key Observation: Note that the dynamical behavior for each x-value shown (under Q_c) is identical to the dynamical behavior of the corresponding sequence S(x) under the shift map. For example, p_+ is fixed under Q_c , while its itinerary $S(p_+) = (111 \cdots)$ is fixed under the shift map. The point α is eventually fixed at p_+ after two iterates, while its itinerary $S(\alpha) = (10111 \cdots)$ is eventually fixed at $(111 \cdots)$ after two iterates of the shift map. This will always be the case as the map Q_c on Λ is actually topologically conjugate to the shift map σ on Σ_2 . In other words, the dynamics of Q_c on the Cantor set Λ are equivalent to the dynamics of the shift map σ on Σ_2 ! This is a truly remarkable fact demonstrating the usefulness of symbolic dynamics. We can understand the complicated dynamics of Q_c by using a simple shift map on the space of sequences of 0's and 1's.

Theorem 2.3 If c < -2, then Q_c on Λ is topologically conjugate to the shift map σ on Σ_2 . The itinerary map $S : \Lambda \mapsto \Sigma_2$ is the conjugacy.

3 Proof of Theorem 2.3

There are two items we must show:

- 1. $S \circ Q_c = \sigma \circ S$, and
- 2. S is a homeomorphism.

Proof of 1. Let $x \in \Lambda$ and suppose that x has itinerary $S(x) = (s_0 s_1 s_2 s_3 \cdots)$. By definition of S,

$$x \in I_{s_0}, \quad Q_c(x) \in I_{s_1}, \quad Q_c^2(x) \in I_{s_2}, \quad Q_c^3(x) \in I_{s_3}, \quad \text{etc.},$$

where $s_i \in \{0, 1\}$. Now consider the itinerary of $Q_c(x)$. This is the itinerary of the first iterate of x. Since $Q_c(x)$ starts in I_{s_1} , the first sequence in the itinerary $S(Q_c(x))$ is s_1 . Then, since $Q_c^2(x) \in I_{s_2}$, the next iterate of $Q_c(x)$ lies in the interval I_{s_2} , and thus the next sequence in the itinerary of $Q_c(x)$ is s_2 . Continuing in this fashion, we have

$$S(Q_c(x)) = (s_1 s_2 s_3 \cdots) = \sigma(S(x)),$$

which proves item 1. In essence, the itinerary map S is constructed to follow the orbit of points under Q_c . So the itinerary of $Q_c(x)$ is found by simply ignoring the first element in the itinerary of x, which is precisely what the shift map σ does.

Proof of 2. This is the hard part. We must show that the itinerary map S is one-to-one, onto, continuous and has a continuous inverse.

S is one-to-one: Suppose that S(x) = S(y) for some $x, y \in \Lambda$. By contradiction, suppose that $x \neq y$. Without loss of generality, we may assume that x < y and focus our attention on the interval [x, y].

Since S(x) = S(y), x and y have the same itineraries, so $Q_c^n(x)$ and $Q_c^n(y)$ lie in the same subinterval I_0 or I_1 for all n. Note that Q_c is a one-to-one function on either I_0 or I_1 (since we only have less than half the parabola on either of these intervals). Using the fact that the composition of one-to-one functions is still one-to-one, we know that Q_c^n maps [x, y] one-to-one onto $[Q_c^n(x), Q_c^n(y)]$. This means that for each n, $[Q_c^n(x), Q_c^n(y)] \subset I_0$ or $[Q_c^n(x), Q_c^n(y)] \subset I_1$ (everything between the endpoints x and y must map injectively between the endpoints $Q_c^n(x)$ and $Q_c^n(y)$). But this means that the entire interval $[x, y] \subset \Lambda$, which contradicts the fact that Λ is totally disconnected.

S is onto: For this part we need to use the Nested Interval Theorem from MATH 242:

Theorem 3.1 (Nested Interval Theorem) Suppose $I_n = [a_n, b_n]$ is a sequence of closed intervals with

$$I_1 \supset I_2 \supset I_3 \supset \cdots \supset I_n \supset I_{n+1} \supset \cdots$$

and that $\lim_{n\to\infty} b_n - a_n = 0$. Then, there exists a unique point $p \in I_n \, \forall n$. In other words,

$$\bigcap_{n=1}^{\infty} I_n = \{p\}.$$

We also need to use the following notation for preimages of Q_c . Let $J \subset I$. Then

$$Q_c^{-1}(J) = \{x \in I : Q_c(x) \in J\}$$

= all points that are mapped into J by Q_c ,

$$\begin{array}{lcl} Q_c^{-n}(J) & = & \{x \in I : Q_c^n(x) \in J\} \\ & = & \text{all points that are mapped into } J \text{ by } Q_c^n. \end{array}$$

Key Fact: If J is a closed interval, then $Q_c^{-1}(J)$ is two closed (and smaller) subintervals, one of which is in I_0 and the other of which is in I_1 (see Figure 9.6) below.

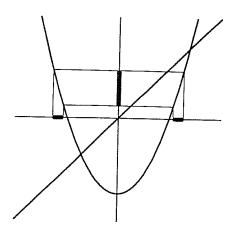


Fig. 9.6 The preimage of a closed interval J is a pair of closed intervals, one in I_0 and one in I_1 .

Suppose that $s = (s_0 s_1 s_2 \cdots)$ is an arbitrary sequence in Σ_2 . To show that S is onto, we must show that there exists an $x \in \Lambda$ such that S(x) = s. We will do this by constructing the point x as the infinite intersection of closed sets.

Define

$$I_{s_0} = \{x \in I : x \in I_{s_0}\}$$

$$I_{s_0s_1} = \{x \in I : x \in I_{s_0} \text{ and } Q_c(x) \in I_{s_1}\}$$

$$I_{s_0s_1s_2} = \{x \in I : x \in I_{s_0}, Q_c(x) \in I_{s_1}, \text{ and } Q_c^2(x) \in I_{s_2}\}$$

$$\vdots$$

$$I_{s_0s_1s_2\cdots s_n} = \{x \in I : x \in I_{s_0}, Q_c(x) \in I_{s_1}, \dots Q_c^n(x) \in I_{s_n}\}$$

The set $I_{s_0s_1s_2\cdots s_n}$ consists of all the points in I whose first n+1 entries in their itinerary agree with the first n+1 entries of s. For example, if $s=(0110\cdots)$, then $I_{s_0s_1s_2s_3}=I_{0110}$ consists of all the points that start in I_0 , with their first and second iterates in I_1 , and third iterate in I_0 .

This set can be found by repeatedly finding pre-images under Q_c and taking their intersection. Specifically, we have that

$$I_{s_0s_1s_2\cdots s_n} = I_{s_0} \cap Q_c^{-1}(I_{s_1}) \cap Q_c^{-2}(I_{s_2}) \cap \cdots \cap Q_c^{-n}(I_{s_n}),$$

by definition of Q_c^{-j} . This shows that $I_{s_0s_1s_2...s_n}$ is a closed set since it is the finite intersection of closed intervals. Moreover, because of the key fact above, we have

$$I_{s_0} \supset I_{s_0s_1} \supset I_{s_0s_1s_2} \supset \cdots \supset I_{s_0s_1s_2\cdots s_{n-1}} \supset I_{s_0s_1s_2\cdots s_n},$$

a nested intersection. The length of $I_{s_0s_1s_2\cdots s_n}$ is approaching 0 as $n\to\infty$ because $Q_c^{-n}(I_{s_n})$ is a smaller and smaller interval as $n\to\infty$ (Q_c is expanding so Q_c^{-1} is contracting). Applying the Nested Interval Theorem, we let

$$x = \bigcap_{n=0}^{\infty} I_{s_0 s_1 s_2 \cdots s_n}.$$

Then $x \in \Lambda$ because the *n*th iterate of x under Q_c lies in I_{s_n} for each n, so the orbit never escapes through the trapdoor. In addition, we have that $S(x) = (s_0 s_1 s_2 \cdots s_n \cdots) = s$ by construction, since $Q_c^n(x) \in I_{s_n} \, \forall n$. This proves that S is onto.

S is continuous: Pick $x \in \Lambda$ and suppose that $S(x) = (s_0 s_1 s_2 \cdots s_n \cdots) \in \Sigma_2$. Let $\epsilon > 0$ be given and pick $n \in \mathbb{N}$ such that $1/2^n < \epsilon$. We must find a $\delta > 0$ such that $|x - y| < \delta$ implies that $d(S(x), S(y)) < \epsilon$, where d is the standard metric on Σ_2 .

Since $S(x)=(s_0s_1s_2\cdots s_n\cdots),\ x\in I_{s_0s_1\cdots s_n}$, which is some small, closed interval in I. Choose δ so that if $y\in\Lambda$ and $|x-y|<\delta$, then $y\in I_{s_0s_1\cdots s_n}$ as well. This is clearly possible if x is in the interior of $I_{s_0s_1\cdots s_n}$, because this is a closed interval with some finite (albeit small) length. We then choose δ so that the δ -neighborhood about x lies inside $I_{s_0s_1\cdots s_n}$. If x happens to be an endpoint of $I_{s_0s_1\cdots s_n}$ (which means it will eventually be fixed at p_+ under iteration), then points to one side of x will eventually escape to ∞ , so we only focus on the intersection of a δ -neighborhood about x with $I_{s_0s_1\cdots s_n}$. Again, it is possible to choose δ sufficiently small to ensure that this intersection lies within $I_{s_0s_1\cdots s_n}$. Thus, if $y\in\Lambda$ and $y\in I_{s_0s_1\cdots s_n}$, then the first n+1 entries of S(y) will agree with the first n+1 entries of S(x). By the Proximity Theorem, this means that $d(S(x),S(y))\leq 1/2^n<\epsilon$, as desired.

 S^{-1} is continuous: This proof is left to you as a HW exercise. :)