MATH 374 Dynamical Systems

Exam \#2 Solutions April 15, 2010 Prof. G. Roberts

1. Give precise definitions of the following: (12 pts.)
(a) A function h is a homeomorphism if ...

Answer: h is one-to-one, onto, continuous and has a continuous inverse.
(b) A dynamical system $f: X \rightarrow X$ exhibits sensitive dependence on initial conditions if ...

Answer: there exists a $\delta>0$, such that for any $x \in X$ and any $\epsilon>0$, we can find a $y \in X$ and a $k \in \mathbb{N}$ such that $d(x, y)<\epsilon$ and $d\left(f^{k}(x), f^{k}(y)\right)>\delta$. In words, given any point x in X, there are points arbitrarily close to x that will move away at least a distance of δ under iteration.
2. Recall that $Q_{c}(x)=x^{2}+c$ and p_{+}is the largest fixed point of Q_{c}. Suppose that $c<-2$. Let $I=\left[-p_{+}, p_{+}\right]$and $\Gamma=\left\{x \in I: Q_{c}^{n}(x) \in I \forall n \in \mathbb{N}\right\}$. Circle all of the following choices that are true. This is NOT multiple choice. There may be more than one correct answer. No work is required for this problem. (18 pts.)
(a) $0 \in \Gamma$.
(b) Γ is totally disconnected.
(c) Γ is a countable set.
(d) The set Γ is dense in I.
(e) The set of periodic points of Q_{c} is dense in Γ.
(f) Q_{c} is chaotic on Γ.

Answer: (b), (e) and (f)

Choice (a) is false because 0 immediately leaves I on the first iteration (the vertex of the parabola drops below the box). Choice (b) is true, as proven in class, since Γ does not contain any intervals. Choice (c) is false because Γ is homeomorphic via the itinerary map S to the set Σ_{2} which is uncountable. Choice (d) is false because Γ is constructed from I by repeatedly deleting the open "middle thirds" intervals. What remains is a Cantor "dust" which is not dense. Choice (e) is true because Q_{c} on Γ is topologically conjugate to the shift map σ on Σ_{2}. Since σ possesses a dense set of periodic points in Σ_{2}, Q_{c} possesses a dense set of periodic points in Γ (this property is preserved under topological conjugacy, as proven in class.) Choice (f) is true because Q_{c} is topologically conjugate to the chaotic shift map σ.
3. For the two sequences $\mathbf{s}, \mathbf{t} \in \Sigma_{2}$ defined as

$$
\mathbf{s}=(010010 \overline{010}), \quad \mathbf{t}=(100100 \overline{100})
$$

compute $d[\mathbf{s}, \mathbf{t}]$. (10 pts.)
Answer: $d[\mathbf{s}, \mathbf{t}]=12 / 7$.
Using the definition of the metric d, we have that

$$
\begin{aligned}
d[\mathbf{s}, \mathbf{t}] & =\frac{1}{2^{0}}+\frac{1}{2^{1}}+\frac{0}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{0}{2^{5}}+\frac{1}{2^{6}}+\frac{1}{2^{7}}+\frac{0}{2^{8}}+\cdots \\
& =\left(1+\frac{1}{2}\right)+\left(\frac{1}{8}+\frac{1}{16}\right)+\left(\frac{1}{64}+\frac{1}{128}\right)+\cdots \\
& =\frac{3}{2}+\frac{3}{16}+\frac{3}{128}+\cdots \\
& =\frac{3 / 2}{1-1 / 8}=\frac{3}{2} \cdot \frac{8}{7}=\frac{12}{7}
\end{aligned}
$$

using the formula for the sum of a geometric series $S=a /(1-r)$.
4. Consider the subset T of Σ_{2} defined as
$T=\left\{\left(s_{0} s_{1} s_{2} \ldots\right)\right.$: the sequence contains infinitely many 0 's and infinitely many 1 's $\}$.
Decide whether or not T is dense in Σ_{2}. Prove your assertion. (12 pts.)
Answer: T is dense in Σ_{2}. Proof: Let $\mathbf{s}=\left(s_{0} s_{1} s_{2} \cdots s_{n} \cdots\right)$ be an arbitrary element of Σ_{2}. Let $\epsilon>0$ be an arbitrary, but fixed, small distance. We must find an element t in T such that $d[\mathbf{s}, \mathbf{t}]<\epsilon$.
Choose $n \in \mathbb{N}$ sufficiently large so that $\frac{1}{2^{n}}<\epsilon$. Define \mathbf{t} to be the sequence

$$
\mathbf{t}=\left(s_{0} s_{1} s_{2} \cdots s_{n} 010101 \overline{01}\right)
$$

Note that \mathbf{t} contains an infinite number of 0's and an infinite number of 1's and is therefore an element of T. By the Proximity Theorem, since \mathbf{s} and \mathbf{t} agree on the first $n+1$ entries, $d[\mathbf{s}, \mathbf{t}] \leq \frac{1}{2^{n}}<\epsilon$, as desired.
5. Prove that $G: \Sigma_{2} \rightarrow \Sigma_{2}$ given by

$$
G\left(s_{0} s_{1} s_{2} \ldots\right)=\left(s_{1} s_{3} s_{9} s_{27} s_{81} \ldots\right)
$$

is a continuous function. (12 pts.)
Answer: Let $\epsilon>0$ be given. Choose $n \in \mathbb{N}$ sufficiently large so that $\frac{1}{2^{n}}<\epsilon$. Set $\delta=\frac{1}{2^{3^{n}}}$. Then, $d[\mathbf{s}, \mathbf{t}]<\delta=\frac{1}{2^{3^{n}}}$ implies that $s_{i}=t_{i} \forall i \leq 3^{n}$ by the second half of the Proximity Theorem. Then, we have

$$
\begin{aligned}
& G(\mathbf{s})=\left(s_{1} s_{3} s_{9} s_{27} \cdots s_{3^{n}} \cdots\right) \\
& G(\mathbf{t})=\left(s_{1} s_{3} s_{9} s_{27} \cdots s_{3^{n}} t_{3^{n+1}} \cdots\right)
\end{aligned}
$$

so that $G(\mathbf{s})$ and $G(\mathbf{t})$ agree on their first $n+1$ entries. Using the Proximity Theorem, this means that $d[G(\mathbf{s}), G(\mathbf{t})] \leq \frac{1}{2^{n}}<\epsilon$, as desired.
6. Compute the Schwarzian derivative $S F(x)$ of $F(x)=e^{k x}$ where $k \neq 0$ is an arbitrary constant. Conclude that $S F(x)<0 \forall x$. (12 pts.)
Answer: $-\frac{1}{2} k^{2}$
Using the formula

$$
S F(x)=\frac{F^{\prime \prime \prime}(x)}{F^{\prime}(x)}-\frac{3}{2}\left(\frac{F^{\prime \prime}(x)}{F^{\prime}(x)}\right)^{2}
$$

we have

$$
S F(x)=\frac{k^{3} e^{k x}}{k e^{k x}}-\frac{3}{2}\left(\frac{k^{2} e^{k x}}{k e^{k x}}\right)^{2}=k^{2}-\frac{3}{2} k^{2}=-\frac{1}{2} k^{2} .
$$

Since $k \neq 0$ is assumed, we have that $k^{2}>0$ which implies that $-\frac{1}{2} k^{2}<0$ and thus $S F(x)<0 \forall x$.
7. True or False: If true, provide a proof. If false, provide a counterexample or give an explanation as to why the statement is false. (24 pts .)
(a) The point with ternary expansion $0.02002000200002 \ldots$ is in the Cantor middle-thirds set.
Answer: True. As proven in class, a point x is in the middle-thirds Cantor set if and only if it has a ternary expansion containing only 0 's and 2 's. Since the point in question has only 0's and 2's in its ternary expansion, it must be in the Cantor middle-thirds set.
(b) Suppose that J is a closed interval on the real line and that $f: J \rightarrow J$ is a continuous function. If f has a periodic point of prime period 88 , then f must also have a periodic point of prime period 20.
Answer: False. We have that $20=2^{2} \cdot 5$ while $88=2^{3} \cdot 11$. It follows that $20<{ }_{s} 88$ in the Sarkovskii ordering. By the converse to Sarkovskii's Theorem, it is possible to construct a continuous function with a periodic point of prime period 88 without having a period 20 point.
(c) Suppose that f and g are continuous functions from \mathbb{R} to \mathbb{R} and that f is topologically conjugate to g. If f has a periodic cycle of prime period 3 , then g has periodic cycles of all periods.
Answer: True. Since f has a cycle of prime period 3, so does g because the conjugacy between f and g maps period n points to period n points (proven on homework). Since g is continuous and has a period 3 cycle, by the Period 3 Theorem (or by Sarkovskii's Theorem), g has periodic cycles of all other periods.

