Every member of this family is anchored to the origin, with another zero at x=-1/c. Figure 6.5 shows that fix $H_c=\{0\}$, and that $H'_c(0)=1$ regardless of c. Now, let's apply the results of Theorem 5.2. Since $H''_c(0)=2c$, case 1 of the theorem applies provided $c\neq 0$. For c<0, we see that $H''_c(0)<0$, and so 0 is weakly attracting on the right and weakly repelling on the left. Similarly, for c>0, $H''_c(0)>0$, and the origin is weakly repelling on the right and weakly attracting on the left. But when c=0, $H''_c(0)=0$, and we look to case 2 of Theorem 5.2. Unfortunately, $H'''_c(x)$ is identically zero and so the theorem does not apply. Observe, however, that H_0 is the identity map, which is totally periodic.

In summary, this family of maps experiences no bifurcations whatsoever, and provides a good example of why the precise definitions given in Chapter 6 of the text are necessary.

1k)
$$F_c(x) = x + cx^2 + x^3$$
, $c = 0$

First of all, when c=0, F_0 is identical to the map in Exercise 1d with $\lambda=1$. (See F_1 and F_1^2 in Figure 6.2a.) But a generic member of this family of functions has two fixed points (see Figures 6.6b-c) since

$$x + cx^{2} + x^{3} = x$$

$$\Rightarrow cx^{2} + x^{3} = 0$$

$$\Rightarrow (c + x)x^{2} = 0$$

$$\Rightarrow x = -c \text{ or } x = 0$$

Now, $F'_c(x) = 1 + 2cx + 3x^2$, and so $F'_c(0) = 1$ regardless of c. Hence, this fixed point fails to undergo a bifurcation which can be seen in Figure 6.6d.

Note that $F_c'(-c) = 1 + c^2$ which is strictly greater than one for all $c \neq 0$. Thus, -c is repelling for all c (even c = 0 which is weakly repelling). We also remark that $F_{-c}(-x) = -F_c(x)$, a most curious property.

The next four exercises apply to the family $Q_c(x) = x^2 + c$.

2. Verify the formulas for the fixed points p_{\pm} and the 2-cycle q_{\pm} given in the text.

Recall that

$$p_{\pm} = \frac{1 \pm \sqrt{1 - 4c}}{2}$$

(a) F₁ and its second iterate.

(b) Bifurcation diagram for c > 0.

(c) F-1 and its second iterate.

(d) Bifurcation diagram for c < 0.

Figure 6.6: Representatives of the family $F_c(x) = x + cx^2 + x^3$.