

See Figure 4.8.

4. Perform a complete orbit analysis for each of the following functions.

4a)
$$F(x) = \frac{1}{2}x - 2$$

First, let's find a fixed point for F:

$$\frac{1}{2}x - 2 = x$$

$$\Rightarrow -2 = \frac{1}{2}x$$

$$\Rightarrow -4 = x.$$

Thus, fix $F = \{-4\}$, and it so happens that $F^n(x) \to -4$ as $n \to \infty$ for all x. See Figure 4.9.

4b) A(x) = |x|

This exercise was essentially solved at the end of Chapter 3 (see Exercises 6, 7e, and 8) where it was shown that

$$\operatorname{fix} A = \{ x \mid x \ge 0 \},\$$

and that all other points are eventually fixed after just one iteration.

$$4c) F(x) = -x^2$$

From the graph of F in Figure 4.10, we see that fix $F = \{-1,0\}$. Since F(1) = -1, we also see that x = 1 is eventually fixed. For -1 < x < 1, $F^n(x) \to 0$ as $n \to \infty$, and for |x| > 1, $F^n(x) \to -\infty$ as $n \to \infty$. That is, 0 is attracting and -1 is repelling.

4d)
$$F(x) = -x^5$$

First, let's compute the fixed points of F:

$$-x^5 = x$$

$$\Rightarrow 0 = x + x^5$$

$$\Rightarrow 0 = x(1 + x^4).$$

Therefore, $0 \in \text{fix } F$ and the other four fixed points are complex. Now,

$$F'(x) = -5x^4$$

- (a) The graph of F(x) = 2x(1-x).
- (b) The graph of $F(x) = x^2 + 1$.

Figure 4.6: The dynamics of two more quadratic functions.

Figure 4.7: The dynamics of the tent map T(x) = 1 - |2x - 1|.