MATH 305
 Complex Analysis Spring 2016

Sample Final Exam Questions

1. Express each quantity in rectangular form $a+i b$ and polar form $r e^{i \theta}$.
(a) $\frac{-8 i}{\sqrt{3}+i}$
(b) $(1-i)^{12}$
2. Prove algebraically that $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}, \quad\left(z_{2} \neq 0\right)$.
3. Find the four roots $(-8-8 \sqrt{3} i)^{1 / 4}$ in polar and rectangular form, and sketch the square in the complex plane that has these roots as its vertices.
4. Let R be the region in the complex plane defined by

$$
R=\{z \mid-1 \leq \operatorname{Re}(z) \leq 1,-\pi / 2 \leq \operatorname{Im}(z) \leq \pi / 2\}
$$

(a) Sketch the region R in the complex plane.
(b) Sketch the image of R under the map $f(z)=e^{z}$.
(c) Sketch the image of R under the map $g(z)=e^{2 z}=\left(e^{z}\right)^{2}$.
5. Evaluate the following limits, if they exist. Show your work, making sure to justify your answers thoroughly.
(a) $\lim _{z \rightarrow \infty} \frac{i z^{4}-3 z^{2}}{\left(4-3 i z^{2}\right)^{2}}$
(b) $\lim _{z \rightarrow 0}\left(\frac{\bar{z}}{z}\right)^{2}$
(c) $\lim _{z \rightarrow-2 i} \frac{z^{10}-50}{\left(z^{2}+4\right)^{2}}$
6. Use the SDC theorem to determine where each of the following functions is differentiable. Give a formula for the derivative whererever the function is differentiable.
(a) $f(z)=z e^{i y}$
(b) $f(z)=-3 x^{2} y+y^{3}-x^{2}+y^{2}-y+i\left(x^{3}-3 x y^{2}+x-2 x y\right)$
7. Find a function $v(x, y)$ such that the function $f(z)=\left(y+e^{x} \sin y\right)+i v(x, y)$ is entire.
8. Use parametrizations to find $\int_{C_{i}}(\bar{z})^{2} d z$ where
(a) C_{1} is the line segment from i to $-i$,
(b) C_{2} is the portion of the unit circle from $-i$ to i, traversed counterclockwise,
(c) $C_{3}=C_{1}+C_{2}$ is the combination of the first two contours.
(d) Why isn't the integral in part (c) equal to 0 ?
9. Let C be the square with vertices $-2,2,2+3 i$, and $-2+3 i$, traversed in the counterclockwise direction. For each function $f(z)$ below, compute $\oint_{C} f(z) d z$. Be sure to specify what theorem or formula you are using.
(a) $f(z)=\frac{\sin z}{z-\pi / 2+i}$
(b) $f(z)=\frac{\sin z}{z-(\pi / 2+i)}$
(c) $f(z)=\frac{z^{3}}{[z-(1+i)]^{3}}$
(d) $f(z)=\frac{1}{z^{4}+5 z^{2}+4}$
10. Suppose that f and g are entire functions and that $f(z)=g(1 / z)$ for all $z \in \mathbb{C}-\{0\}$. Use Liouville's theorem to prove that f must be constant.
11. Let

$$
f(z)=\frac{1}{z(z-3)}
$$

(a) Using $\frac{1}{z(z-3)}=\frac{1}{z} \cdot \frac{-1}{3(1-z / 3)}$, find the Laurent series expansion of $f(z)$ in the punctured disk $0<|z|<3$. Give the first four terms in the series as well as a closed form expression for the series.
(b) Find $\operatorname{Res}_{z=0} f(z)$ and $\operatorname{Res}_{z=3} f(z)$.
(c) Explain why $\oint_{C} f(z) d z=0$ for any simple closed contour C that encloses both 0 and 3 .
12. Suppose that $g(z)=z^{3} \cos (1 / z)$.
(a) Find the Laurent series expansion for $g(z)$ about $z_{0}=0$. For what points in \mathbb{C} does it converge?
(b) What type of singular point is $z_{0}=0$?
(c) What is the residue of $g(z)$ at $z_{0}=0$?
13. Find the value of the integral

$$
\oint_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} d z
$$

where
(a) C is the circle $|z-2|=2$ taken counterclockwise,
(b) C is the circle $|z|=4$ taken clockwise.
14. Use residues to compute the real improper integral

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} d x
$$

Be sure to justify all the steps taken in your calculation.

15. Complex Analysis Potpourri:

(a) If the Cauchy-Riemann equations are satisfied for the function $f(z)$ at the point z_{0}, then $f^{\prime}\left(z_{0}\right)$ exists. This statement is (choose one): TRUE FALSE
(b) State the principal branch of the function $\log (z)$ and sketch the domain of the function. Explain why the branch cut is necessary.
(c) Find and simplify the principal value of $(4 i)^{-i}$.
(d) What are the singular points of $g(z)=\tan z$?
(e) If $f(z)=\frac{1}{e^{z}+1}$, what is the radius of the largest disk about $z_{0}=0$ for which the Taylor series of $f(z)$ is guaranteed to converge?
16. TRUE or FALSE. If the statement is true, provide a proof. If the statement is false, explain why or provide a counterexample.
(a) $\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right)$ for any $z_{1}, z_{2} \in \mathbb{C}$, where $\log z$ is the principal value of the logarithmic function.
(b) If $f(z)$ is continuous on a domain D and $\oint_{C} f(z) d z=0$ for every closed contour C in D, then $f(z)$ is analytic in D.
(c) The sum of the infinite series $1+i+i^{2}+i^{3}+i^{4}+\cdots$ is $\frac{1+i}{2}$.
(d) $\lim _{z \rightarrow \infty} e^{z}=\infty$.
(e) The function $g(z)=\frac{e^{z}-1-z}{z^{2}}$ has a removable singularity at $z=0$.

