MATH 305 Quiz #1 SOLUTIONS

February 11, 2016 Prof. G. Roberts

- 1. Let z be the complex number $\sqrt{3} i$. (3 pts.)
 - a) Write z in polar form, $z = re^{i\theta}$. Answer: $z = 2e^{-i\pi/6}$ We have $r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2$ and using a 30-60-90 triangle, $\operatorname{Arg}(z) = -\pi/6$. (Note that z is in the fourth quadrant of the complex plane.)
 - b) Using your answer to part a), express z⁹ in rectangular coordinates x + iy.
 Answer: z⁹ = 512i.
 We have

$$z^{9} = (2e^{-i\pi/6})^{9} = 2^{9}e^{-i9\pi/6} = 512e^{-i3\pi/2} = 512e^{i\pi/2} = 512(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) = 512i.$$

2. Consider the following statements involving the conjugate and the modulus. Here, z, z_1 , and z_2 are arbitrary complex numbers. Circle each statement that is always true. (4 pts.)

a)
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

b) $|z_1 + z_2| = |z_1| + |z_2|$

c)
$$z - \overline{z} = 2 \operatorname{Re}(z)$$

d)
$$z \cdot \overline{z} = |z|^2$$

Answer: a) and d) are always true. b) should be $|z_1+z_2| \le |z_1|+|z_2|$ (the triangle *inequality*) while c) should be $z + \overline{z} = 2 \operatorname{Re}(z)$.

3. Describe in words and sketch the set of all $z \in \mathbb{C}$ satisfying |iz + 1| = 3. (3 pts.)

Answer: This is the circle centered at $z_0 = i$ of radius 3.

The simplest way to do the problem is to factor out the *i* and use the property that $|z_1z_2| = |z_1||z_2|$ (the modulus of the product equals the product of the moduli). We have

$$|iz+1| = |i(z+\frac{1}{i})| = |i||z+\frac{1}{i}| = 1 \cdot |z-i|$$

since 1/i = -i. Thus, the equation reduces to |z - i| = 3. This is the set of all points that are 3 units from *i*, or a circle centered at $z_0 = i$ of radius 3.

Note: Be sure to label the tickmarks on your axes when drawing curves and regions in the complex plane.