MATH 305 Quiz \#1 SOLUTIONS

February 11, 2016 Prof. G. Roberts

1. Let z be the complex number $\sqrt{3}-i$. (3 pts .)
a) Write z in polar form, $z=r e^{i \theta}$.

Answer: $z=2 e^{-i \pi / 6}$
We have $r=\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=2$ and using a 30-60-90 triangle, $\operatorname{Arg}(z)=-\pi / 6$. (Note that z is in the fourth quadrant of the complex plane.)
b) Using your answer to part \mathbf{a}), express z^{9} in rectangular coordinates $x+i y$.

Answer: $z^{9}=512 i$.
We have

$$
z^{9}=\left(2 e^{-i \pi / 6}\right)^{9}=2^{9} e^{-i 9 \pi / 6}=512 e^{-i 3 \pi / 2}=512 e^{i \pi / 2}=512\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=512 i
$$

2. Consider the following statements involving the conjugate and the modulus. Here, z, z_{1}, and z_{2} are arbitrary complex numbers. Circle each statement that is always true. (4 pts.)
a) $\overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$
b) $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$
c) $z-\bar{z}=2 \operatorname{Re}(z)$
d) $z \cdot \bar{z}=|z|^{2}$

Answer: a) and d) are always true. b) should be $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ (the triangle inequality) while \mathbf{c}) should be $z+\bar{z}=2 \operatorname{Re}(z)$.
3. Describe in words and sketch the set of all $z \in \mathbb{C}$ satisfying $|i z+1|=3$. (3 pts.)

Answer: This is the circle centered at $z_{0}=i$ of radius 3 .
The simplest way to do the problem is to factor out the i and use the property that $\left|z_{1} z_{2}\right|=$ $\left|z_{1}\right|\left|z_{2}\right|$ (the modulus of the product equals the product of the moduli). We have

$$
|i z+1|=\left|i\left(z+\frac{1}{i}\right)\right|=|i|\left|z+\frac{1}{i}\right|=1 \cdot|z-i|
$$

since $1 / i=-i$. Thus, the equation reduces to $|z-i|=3$. This is the set of all points that are 3 units from i, or a circle centered at $z_{0}=i$ of radius 3 .
Note: Be sure to label the tickmarks on your axes when drawing curves and regions in the complex plane.

