MATH 305 Complex Analysis

Sample Questions for Exam 2

1. Which of the following functions are entire, that is, analytic on the entire complex plane? Provide justification.

(a)
$$f(z) = e^{-z^2}$$

(b) $f(z) = e^{-y} \sin x - ie^{-y} \cos x$
(c) $f(z) = \frac{2z+3}{z^2+8}$

- 2. Show that $u(x, y) = xy + e^{-2y} \cos(2x)$ is a harmonic function and find a harmonic conjugate v(x, y).
- 3. Find and simplify the principal value of each of the following:
 - (a) $(-i)^{1+2i}$
 - (b) $\sin(\pi + i)$
 - (c) $Log(-3\sqrt{3}+3i)$
- 4. Suppose that the branch $\log z = \ln r + i \theta \ (r > 0, \frac{3\pi}{2} < \theta < \frac{7\pi}{2})$ is specified for the logarithmic function.
 - (a) Compute $\log(2+2i)$.
 - (b) True or False: $\log(i^2) = 2\log(i)$.
- 5. Compute the following contour integrals use parametrizations for the first three. Simplify your answers.
 - (a) ∫_C z̄ dz where C is the line segment from 1 to i.
 (b) ∮_C 1/z dz, where C is the unit circle, traversed clockwise.
 (c) ∮_C 1/z² dz, where C is the unit circle, traversed counterclockwise.
 (d) ∫_iⁱ⁺² ze^{z²} dz
- 6. Let C be the square with vertices 2 + 2i, -2 + 2i, -2 2i and 2 2i, traversed in the counterclockwise direction. For each function f(z) below, compute $\oint_C f(z) dz$. Be sure to specify what theorem or formula you are using.

(a)
$$f(z) = \frac{e^z}{z - (1 + \frac{1}{2}\pi i)}$$

(b) $f(z) = \frac{e^z}{z - (2 + 3i)}$
(c) $f(z) = \frac{\cos z}{(z + i)(z^2 + 9)}$

7. Without computing the integral, show that

$$\left|\oint_C (e^{iz} - z^2) \, dz\right| \leq 72.$$

where C is the square with vertices 0, 2, 2 + 2i and 2i, traversed in the counterclockwise direction.

8. Let C be the unit circle $z = e^{i\theta}, -\pi \le \theta \le \pi$.

(a) Show that for any real constant a, $\oint_C \frac{e^{az}}{z} dz = 2\pi i$.

(b) By converting the integral in part (a) into θ and $d\theta$, derive the formula

$$\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) \, d\theta = \pi.$$

- 9. TRUE or FALSE. If the statement is true, provide a **proof**. If the statement is false, explain why or provide a **counterexample**.
 - (a) $\operatorname{Log}\left(\frac{z_1}{z_2}\right) = \operatorname{Log}(z_1) \operatorname{Log}(z_2)$ for any $z_1, z_2 \in \mathbb{C}$.
 - (b) $e^{-iz} = \cos z i \sin z$ for any $z \in \mathbb{C}$.
 - (c) $g(z) = e^{\cos z} \cdot \sin z, z \in \mathbb{C}$ is an odd function, that is g(-z) = -g(z).
 - (d) $z^{c_1}z^{c_2} = z^{c_1+c_2}$ for any complex numbers z, c_1, c_2 , where all powers are taken to be the principal values.
 - (e) $\oint_C \frac{-1}{(z-1)^{2017}} dz = 0$ for any simple closed contour C not passing through z = 1.