MATH 305 Complex Analysis

Sample Questions for Exam 2

1. Which of the following functions are entire, that is, analytic on the entire complex plane? Provide justification.
(a) $f(z)=e^{-z^{2}}$
(b) $f(z)=e^{-y} \sin x-i e^{-y} \cos x$
(c) $f(z)=\frac{2 z+3}{z^{2}+8}$
2. Show that $u(x, y)=x y+e^{-2 y} \cos (2 x)$ is a harmonic function and find a harmonic conjugate $v(x, y)$.
3. Find and simplify the principal value of each of the following:
(a) $(-i)^{1+2 i}$
(b) $\sin (\pi+i)$
(c) $\log (-3 \sqrt{3}+3 i)$
4. Suppose that the branch $\log z=\ln r+i \theta\left(r>0, \frac{3 \pi}{2}<\theta<\frac{7 \pi}{2}\right)$ is specified for the logarithmic function.
(a) Compute $\log (2+2 i)$.
(b) True or False: $\log \left(i^{2}\right)=2 \log (i)$.
5. Compute the following contour integrals - use parametrizations for the first three. Simplify your answers.
(a) $\int_{C} \bar{z} d z$ where C is the line segment from 1 to i.
(b) $\oint_{C} \frac{1}{z} d z$, where C is the unit circle, traversed clockwise.
(c) $\oint_{C} \frac{1}{z^{2}} d z$, where C is the unit circle, traversed counterclockwise.
(d) $\int_{i}^{i+2} z e^{z^{2}} d z$
6. Let C be the square with vertices $2+2 i,-2+2 i,-2-2 i$ and $2-2 i$, traversed in the counterclockwise direction. For each function $f(z)$ below, compute $\oint_{C} f(z) d z$. Be sure to specify what theorem or formula you are using.
(a) $f(z)=\frac{e^{z}}{z-\left(1+\frac{1}{2} \pi i\right)}$
(b) $f(z)=\frac{e^{z}}{z-(2+3 i)}$
(c) $f(z)=\frac{\cos z}{(z+i)\left(z^{2}+9\right)}$
7. Without computing the integral, show that

$$
\left|\oint_{C}\left(e^{i z}-z^{2}\right) d z\right| \leq 72
$$

where C is the square with vertices $0,2,2+2 i$ and $2 i$, traversed in the counterclockwise direction.
8. Let C be the unit circle $z=e^{i \theta},-\pi \leq \theta \leq \pi$.
(a) Show that for any real constant $a, \oint_{C} \frac{e^{a z}}{z} d z=2 \pi i$.
(b) By converting the integral in part (a) into θ and $d \theta$, derive the formula

$$
\int_{0}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=\pi
$$

9. TRUE or FALSE. If the statement is true, provide a proof. If the statement is false, explain why or provide a counterexample.
(a) $\log \left(\frac{z_{1}}{z_{2}}\right)=\log \left(z_{1}\right)-\log \left(z_{2}\right)$ for any $z_{1}, z_{2} \in \mathbb{C}$.
(b) $e^{-i z}=\cos z-i \sin z$ for any $z \in \mathbb{C}$.
(c) $g(z)=e^{\cos z} \cdot \sin z, z \in \mathbb{C}$ is an odd function, that is $g(-z)=-g(z)$.
(d) $z^{c_{1}} z^{c_{2}}=z^{c_{1}+c_{2}}$ for any complex numbers z, c_{1}, c_{2}, where all powers are taken to be the principal values.
(e) $\oint_{C} \frac{-1}{(z-1)^{2017}} d z=0$ for any simple closed contour C not passing through $z=1$.
