MATH 305 Complex Analysis

Sample Questions for Exam 1

1. Express each quantity in rectangular form $x+i y$ and polar form $r e^{i \theta}$.
(a) $\frac{1+2 i}{3-4 i}$
(b) $(1+\sqrt{3} i)^{8}$
2. Prove that $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$ in two different ways:
(a) using rectangular coordinates $x+i y$,
(b) using the property $|z|^{2}=z \bar{z}$.
3. (a) Draw a figure and explain geometrically why $|z+i|+|z-i| \geq 2$ for all $z \in \mathbb{C}$. For which z does equality hold?
(b) Sketch and describe the set of all points satisfying $|z+i|+|z-i|=4$.
4. Write the cube roots of $-8 i$ in polar and rectangular form, and sketch the triangle in the complex plane that has these roots as its vertices.
5. Let R be the region in the complex plane defined by

$$
R=\{z \mid 0 \leq \operatorname{Re}(z) \leq 2\}
$$

(a) Sketch the region R in the complex plane.
(b) Sketch the image of R under the map $g(z)=e^{z}$.
6. Use the $\epsilon-\delta$ definition of the limit to prove that $\lim _{z \rightarrow 3 i} 2 z^{2}-4 i z=-6$.

Hint: You will need to use the triangle inequality as well as the inequality $\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$ in your proof. You should end up choosing $\delta=\min \{1, \epsilon / 10\}$.
7. Let $f(z)=1 / z$.
(a) Write f in the form $u(x, y)+i v(x, y)$ and in the form $u(r, \theta)+i v(r, \theta)$.
(b) Verify that the Cauchy-Riemann equations hold in both rectangular form and in polar form.
(c) Show that $f^{\prime}(z)=-1 / z^{2}$.
(d) What is the image of the unit circle under f ?
(e) What is the image of the circle $|z|=r$ under f ?
(f) What is the image of the ray $\theta=\pi / 4,0<r \leq 1$ under f ?
8. Evaluate the following limits, if they exist. Show your work, making sure to justify your answers thoroughly.
(a) $\lim _{z \rightarrow \infty} \frac{z^{2}}{(i z+1)^{2}}$
(b) $\lim _{z \rightarrow 2 i} \frac{z}{z^{2}+4}$
9. Use the SDC theorem to determine where each of the following functions is differentiable and then compute $f^{\prime}(z)$ at these points.
(a) $f(z)=y^{2}+i x^{2}$
(b) $f(z)=x-2 x y+i\left(x^{2}+y-y^{2}\right)$
10. Consider the function f defined as

$$
f(z)=\left\{\begin{array}{cl}
\frac{z^{3}}{(\bar{z})^{2}} & \text { if } z \neq 0 \\
0 & \text { if } z=0
\end{array}\right.
$$

(a) Show that f is continuous at $z=0$.
(b) Show that f is not differentiable at $z=0$.

