
MATH 305 Complex Analysis

Exam #2 SOLUTIONS April 21, 2016 Prof. G. Roberts

1. Consider the functions f(z) and g(z) given below. One of these functions is entire, while the
other is nowhere analytic. Determine which is which. Be sure to show that each function has
the given property. (12 pts.)

f(z) = e2y cos(2x) + ie2y sin(2x), g(z) = e−2y cos(2x) + ie−2y sin(2x),

Answer: f is nowhere analytic and g is entire.

We check the Cauchy-Riemann equations and apply the SCD Theorem. For f(z), we have
u = e2y cos(2x) and v = e2y sin(2x), so that

ux = −2e2y sin(2x) and vy = 2e2y sin(2x).

It follows that ux = vy only if sin(2x) = 0 or x = (nπ)/2, n ∈ Z. Similarly, we have

uy = 2e2y cos(2x) and vx = 2e2y cos(2x),

so that uy = −vx is true only if cos(2x) = 0 or x = π/4 + (nπ)/2, n ∈ Z. Since cos2(2x) +
sin2(2x) = 1 6= 0, it is clear that the Cauchy-Riemann equations can not both be satisfied
simultaneously. Thus, f ′(z) does not exist for any z ∈ C, which means f is nowhere analytic.

For g(z), we have u = e−2y cos(2x) and v = e−2y sin(2x), so that

ux = −2e−2y sin(2x) = vy and uy = −2e−2y cos(2x) = −vx,

so that the Cauchy-Riemann equations are satisfied on all of C. Since the partial derivatives
are continuous on the entire plane, the SCD theorem then implies that f ′(z) exists for all
z ∈ C. Thus, g is an entire function. (Note that g(z) = e2iz, which is the composition of the
entire functions 2iz and ez.)

2. Show that u(x, y) = −y − x3 + 3xy2 is a harmonic function and find a harmonic conjugate
v(x, y). (12 pts.)

Answer: First, we check that u satisfies Laplace’s equation uxx + uyy = 0. We have
ux = −3x2 + 3y2, so that uxx = −6x. Likewise, we have uy = −1 + 6xy, so that uyy = 6x.
It follows that uxx + uyy = 0. Since the first and second partial derivatives of u exist and are
continuous, u is a harmonic function.

To find a harmonic conjugate v, we begin with the first Cauchy-Riemann equation ux = vy.
This implies that vy = −3x2 + 3y2. Integrating this equation with respect to y gives

v(x, y) = −3x2y + y3 + c(x), (1)

where c(x) is some unknown function of the single variable x. If we now differentiate v with
respect to x, we find vx = −6xy+ c′(x). By the second Cauchy Riemann equation, uy = −vx,
we must have

−1 + 6xy = 6xy − c′(x) or c′(x) = 1.

Integrating this last equation with respect to x gives c(x) = x+ c, where c ∈ R is an arbitrary
constant. Returning to our v in equation (1), we obtain v(x, y) = −3x2y + y3 + x+ c.



3. Answer the following questions. Be sure to show your work. (13 pts.)

(a) Compute the principal value of
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Answer: −eπ/3. Use the formula zc = ecLog z. We first compute that |1/2−i
√

3/2| = 1
(lies on the unit circle) and Arg(1/2−i

√
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ln 1− iπ/3 = −iπ/3. Thus,(
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= e(3+i)·(−iπ/3) = e−iπ+π/3 = e−iπ · eπ/3 = −eπ/3,

since e−iπ = −1.

(b) Let z = reiθ with r > 0. Show that elog z = z for any value of the multiple-valued
function log z.

Answer: We have

elog z = eln r+i(θ+2πn), where n ∈ Z

= eln r · eiθ · ei2πn

= reiθ since ei2πn = 1 for n ∈ Z

= z. QED

Note that r > 0 is important to assume since log 0 is undefined. Also, ei2πn = cos(2πn)+
i sin(2πn) = 1, since n is an integer.

4. Let C denote the circle of radius four centered at the origin, traversed in the counterclockwise
direction. Evaluate the following contour integral in TWO different ways. For method one,
use a parametrization of C and evaluate the contour integral directly. For method two, use
the Cauchy integral formula. (14 pts.) ∮

C

z2 + 3

z
dz

Answer: 6πi.

First, let z = 4eiθ, 0 ≤ θ ≤ 2π parametrize the circle. Evaluating the contour integral directly
gives ∮

C

z2 + 3

z
dz =

∫ 2π

0

16e2iθ + 3

4eiθ
· 4ieiθ dθ

= i

∫ 2π

0

16e2iθ + 3 dθ
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)
= 8e2iθ + 3iθ

∣∣2π
0

= 8e4πi + 6πi− 8

= 6πi.



Second, we apply the Cauchy integral formula f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz with f(z) = z2 + 3

(an entire function) and z0 = 0. This yields∮
C

z2 + 3

z
dz = 2πi · f(0) = 2πi · 3 = 6πi,

as expected.

5. Compute each of the following integrals. Be sure to specify what theorem or formula you are
using. (21 pts.)

(a)

∫
C

z2 dz, where C is the line segment from i to −i.

Answer: 2i/3.

Since z2 is not analytic, nor does it have an antiderivative, we must compute the integral
directly. To parametrize the line segment, we let z = (1 − t)i + t(−i) = i − 2it =
i(1− 2t), 0 ≤ t ≤ 1. Then,∮
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(b)

∫ π

iπ

cos(iz) dz.

Answer: sinh(π).

We use the AD Theorem.∫ π

iπ

cos(iz) dz =
1

i
sin(iz)

∣∣∣∣π
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=
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e−π − eπ

)
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)
= sinh(π).

(c)

∮
C

z2 + 1

ez
dz, where C is the square with vertices 2 + 2i, −2 + 2i, −2− 2i and 2− 2i,

traversed in the counterclockwise direction.

Answer: 0. Since both z2 + 1 and ez are entire functions, and since ez 6= 0 for any
z ∈ C, the quotient rule implies that (z2 + 1)/ez is an entire function. By the Cauchy-
Goursat Theorem, the contour integral is 0. To see why ez 6= 0 for any z ∈ C, recall
that |ez| = ex > 0 for any x ∈ R. Since the modulus is always positive, the value of the
function ez can never vanish.

6. Without computing the integral, show that∣∣∣∣∮
C

(zez − i) dz
∣∣∣∣ ≤ 6(1 +

√
2 e),

where C is the rectangle with vertices −1, 1, 1+i and −1+i, traversed in the counterclockwise
direction. (12 pts.)

Answer: We use the ML-theorem. The length L of the contour is equal to the perimeter of
the rectangle, which is 2 + 1 + 2 + 1 = 6. To bound the modulus of the integrand, we have

|zez − i| ≤ |zez|+ | − i| (triangle inequality)

= |z| · |ez|+ 1

= |z| · ex + 1

≤
√

2 · ex + 1 (since 1 + i and −1 + i are the furthest points from the origin)

≤
√

2 · e1 + 1 (since x ≤ 1 on C)

= 1 +
√

2 e.

Consequently, ∣∣∣∣∮
C

(zez − i) dz
∣∣∣∣ ≤ M · L = 6(1 +

√
2 e). QED



7. TRUE or FALSE. If the statement is true, provide a proof. If the statement is false, provide
a counterexample. (16 pts.)

(a) cos2 z + sin2 z = 1 for any z ∈ C.

Answer: TRUE.

Using the definitions of cos z and sin z, we have

cos2 z + sin2 z =

(
eiz + e−iz

2

)2

+

(
eiz − e−iz

2i

)2

=
1

4

(
e2iz + 2 + e−2iz

)
+

1

−4

(
e2iz − 2 + e−2iz

)
=

1

4

(
e2iz + 2 + e−2iz − e2iz + 2− e−2iz

)
=

1

4
· 4

= 1. QED

(b) If the branch log z = ln r + i θ (r > 0,−π
4
< θ < 7π

4
) is specified for the logarithmic

function, then log(z2) = 2 log z for any z in the domain of both functions.

Answer: FALSE.

The equation log(z2) = 2 log z will not hold for any z with 7π/8 < arg z < 7π/4. For
example, if z = −1, then we have

log(z2) = log(1) = ln 1 + i · 0 = 0 (since 0 ∈ (−π/4, 7π/4)),

while

2 log z = 2 log(−1) = 2(ln 1 + iπ) = 2πi, (since π ∈ (−π/4, 7π/4)).

Since 0 6= 2πi, we have a counterexample.

Similarly, if z = −i, then

log(z2) = log(−1) = ln 1 + iπ = πi (since π ∈ (−π/4, 7π/4)),

while

2 log z = 2 log(−i) = 2(ln 1 + i 3π/2) = 3πi, (since 3π/2 ∈ (−π/4, 7π/4)).

Since πi 6= 3πi, we have another counterexample.

Because 2 log z will double the imaginary part (the argument of z in the specified branch),
any z with 7π/8 < arg z < 7π/4 will result in an imaginary part for 2 log z outside the
specified region. For such a z, log(z2) will always have an imaginary part that is 2π less
than that of 2 log z, as is the case with the two counterexamples above.


