
MATH 305 Complex Analysis

Exam #1 SOLUTIONS March 3, 2016 Prof. G. Roberts

1. [13 pts.] Circle all of the following complex numbers that lie on the unit circle. There may
be anywhere from zero to six correct choices.

(a) −i

(b)
4

5
− 3

5
i

(c)
2

3− i
(d)
√

2 ei θ for any θ ∈ R

(e) ei
√
2 θ for any θ ∈ R

(f)
z

z
for any z ∈ C− {0}

Answer: Choices (a), (b), (e), and (f) all lie on the unit circle since they have a modulus
of one. For (b), we have∣∣∣∣45 − 3

5
i

∣∣∣∣ =
√

(4/5)2 + (−3/5)2 =
√

16/25 + 9/25 = 1,

while for (e), we have

|ei
√
2 θ| = | cos(

√
2 θ) + i sin(

√
2 θ)| =

√
cos2(

√
2 θ) + sin2(

√
2 θ) = 1.

For choice (f), note that ∣∣∣ z̄
z

∣∣∣ =
|z̄ |
|z|

=
|z|
|z|

= 1.

Choice (c) has a modulus of
√

10/5 and choice (d) has a modulus of
√

2.



2. Let z be the complex number z = −2 + 2
√

3 i.

a) Write z in polar form, z = reiθ. (4 pts.)

Answer: We have r = |z| =
√

(−2)2 + (2
√

3)2 =
√

4 + 12 = 4. By drawing a 30-60-90

triangle in the second quadrant, we find that Arg(z) = π − π/3 = 2π/3. Therefore,

z = 4ei
2π
3 .

b) Using your answer to part a), find all of the roots z1/4 in rectangular coordinates x+ iy.
Draw a sketch of the roots in the complex plane, including the polygon whose vertices
are located at the roots. (10 pts.)

Answer: The roots are

±
√

2

(√
3

2
+ i

1

2

)
and ±

√
2

(
−1

2
+ i

√
3

2

)
.

Using the polar form of z, we find that(
4ei

2π
3

)1/4
= 41/4 · ei(

2π
12

+ 2πk
4 ), k = 0, 1, 2, 3

=
√

2 ei(
π
6
+πk

2 ), k = 0, 1, 2, 3

=
√

2 ei
π
6 ,
√

2 ei
2π
3 ,
√

2 ei
7π
6 ,
√

2 ei
5π
3

=
√

2 ei
π
6 ,
√

2 ei
2π
3 ,−
√

2 ei
π
6 ,−
√

2 ei
2π
3

using the fact that ei π = −1. Converting these polar expressions into rectangular coordinates
using Euler’s formula gives the answer above. The four roots form a square in the complex
plane that is rotated 30◦ ccw from the positive x-axis and lies on the circle of radius

√
2

centered at the origin.



3. [13 pts.] Sets in C

(a) Let R be the set {z ∈ C : Re(z) = 1, π ≤ Im(z) ≤ 2π}. Sketch the set R in the complex
plane. Then sketch and describe the image of R under the map f(z) = ez. Be sure to
label your graphs and axes carefully.

Answer:

The set R is simply a line segment with real part equal to 1 and imaginary part between
π and 2π. Using the fact that ez = ex · eiy, we see that the image of R under ez is a
semi-circle of radius e1 = e with angles ranging between π and 2π as shown.

(b) Describe in words and sketch the set of points z ∈ C satisfying the equation

|z − i| = |z − 1|.

Answer:

Recall that |z1 − z2| represents the distance between the two complex numbers z1 and z2.
Thus, the set of z ∈ C satisfying |z − i| = |z − 1| is the set of all complex numbers that are
equidistant from 1 and i in the complex plane. This is the perpendicular bisector of the line
segment between 1 and i, or the set of points whose real and imaginary parts are equal:

{z ∈ C : Re(z) = Im(z)} or {z = x+ iy : y = x}



Alternatively, we have |z− i| = |x+ i(y− 1)| =
√
x2 + (y − 1)2 and |z− 1| = |(x− 1) + iy| =√

(x− 1)2 + y2. Solving
√
x2 + (y − 1)2 =

√
(x− 1)2 + y2 yields

x2 + (y − 1)2 = (x− 1)2 + y2 =⇒ x2 + y2 − 2y + 1 = x2 − 2x+ 1 + y2,

which simplifies to y = x.

4. [12 pts.] Use the ε-δ definition of the limit to prove rigorously that lim
z→4i

3i z − 7 = 5.

Answer: Let ε > 0 be given. If f(z) = 3i z − 7 and w = 5, we want to find a δ = δ(ε) so
that |f(z) − w| < ε whenever 0 < |z − 4i| < δ. Using properties of modulus and conjugate,
we have

|f(z)− w| = |3i z − 7− 5|
= |3i z − 12|
= |3i(z + 4i)|
= |3i| · |z + 4i|
= 3 · |z + 4i|
= 3|z − 4i|.

Choose δ = ε/3. Then,

|f(z)− w| = 3|z − 4i| < 3δ = 3 · ε
3

= ε

whenever 0 < |z − 4i| < δ. QED

5. [14 pts.] Evaluate the following limits, if they exist. Show your work, making sure to justify
your answers thoroughly.

(a) lim
z→∞

6i(z2 + 1)

(3z − i)2

Answer: 2i/3. Using the LIPI theorem, and later the BLT, we have

lim
z→∞

6i(z2 + 1)

(3z − i)2
= lim

z→∞

6iz2 + 6i

9z2 − 6iz − 1

= lim
z→0

6i
(
1
z

)2
+ 6i

9
(
1
z

)2 − 6i · 1
z
− 1

= lim
z→0

6i+ 6iz2

9− 6iz − z2

=
6i+ 0

9− 0− 0
=

6i

9
=

2i

3
.



(b) lim
z→0

Im(z)

z

Answer: This limit does not exist, which can be seen by taking the limit in the real
and imaginary directions. Suppose z = x (so y = 0) and we take the limit along the real
axis. Then,

lim
z→0

Im(z)

z
= lim

x→0

0

x
= lim

x→0
0 = 0.

On the other hand, if z is pure imaginary, z = iy (so x = 0), we obtain

lim
z→0

Im(z)

z
= lim

y→0

y

iy
= lim

y→0

1

i
=

1

i
= −i.

Since the two limits do not agree, the limit does not exist.

6. [18 pts.] For each of the functions below, find the points in the complex plane (if any) where
f ′(z) exists and give a formula (simplified) for the derivative at those points.

(a) f(z) = x2 + 3y2 + i(2xy + cos(4x)).

Answer: We have u(x, y) = x2 + 3y2 and v(x, y) = 2xy + cos(4x). Checking the
Cauchy-Riemann equations, we have

ux = 2x = vy,

but uy = 6y and vx = 2y − 4 sin(4x). Solving the equation uy = −vx yields

6y = −2y + 4 sin(4x) or y =
1

2
sin(4x).

Since the partial derivatives exist and are continuous on the whole plane, the SCD
theorem guarantees that f ′(z) exists for all complex numbers z = x + iy satisfying
y = 1

2
sin(4x).

To compute the value of the derivative at these points, we find that

f ′(z) = ux + ivx = 2x+ i(2y − 4 sin(4x)) = 2x− i3 sin(4x) or 2x− i6y.

(b) f(z) = (z)2 + iz

Answer: First we compute the real and imaginary parts of f by substituting in z =
x+ iy. This gives

f(z) = (x− iy)2 + i(x+ iy) = x2 − y2 − 2xyi+ xi− y = x2 − y2 − y + i(x− 2xy),

so that u = x2 − y2 − y and v = x− 2xy. Checking the Cauchy-Riemann equations, we
have ux = 2x and vy = −2x so that ux = vy gives

2x = −2x =⇒ x = 0.

Similarly, we have uy = −2y − 1 and vx = 1− 2y so that uy = −vx implies

−2y − 1 = −1 + 2y =⇒ y = 0.

Thus, f ′(z) can only exist at the origin (0, 0) or z = 0. By the SCD Theorem, since the
partial derivatives are continuous at the origin, we know that f ′(0) exists and is found
via

f ′(0) = ux(0, 0) + ivx(0, 0) = 0 + i · 1 = i.



7. [16 pts.] Complex Analysis Potpourri:

(a) Give an example of two complex numbers z1, z2 such that Arg(z1z2) 6= Arg(z1)+Arg(z2).

Answer: The key is to take complex numbers whose real part is negative. For instance,
if z1 = −1 + i and z2 = −1, then

Arg(z1z2) = Arg(1− i) = −π
4
,

but

Arg(z1) =
3π

4
, Arg(z2) = π implies Arg(z1) + Arg(z2) =

7π

4
6= −π

4
.

Other examples include z1 = −1 and z2 = i, and even simply z1 = z2 = −1.

(b) Which point on the Riemann sphere corresponds to ∞?

Answer: The North Pole.

(c) If the Cauchy-Riemann equations are satisfied for the function f(z) at the point z0, then
f ′(z0) exists.

Answer: This statement is FALSE. Just satisfying the Cauchy-Riemann equations
alone is not enough to guarantee differentiability. The partial derivatives must also be
continuous at z0.

(d) If f(z) = u(r, θ) + iv(r, θ), what are the Cauchy-Riemann equations in polar form?

Answer: rur = vθ and −rvr = uθ.

(e) Suppose that u(x, y) is a function of two variables. State the limit definition of uy(1, 2).

Answer:

uy(1, 2) = lim
h→0

u(1, 2 + h)− u(1, 2)

h
.


