MATH 305 Complex Analysis Exam \#1 SOLUTIONS March 3, 2016 Prof. G. Roberts

1. [13 pts.] Circle all of the following complex numbers that lie on the unit circle. There may be anywhere from zero to six correct choices.
(a) $-i$
(b) $\frac{4}{5}-\frac{3}{5} i$
(c) $\frac{2}{3-i}$
(d) $\sqrt{2} e^{i \theta}$ for any $\theta \in \mathbb{R}$
(e) $e^{i \sqrt{2} \theta}$ for any $\theta \in \mathbb{R}$
(f) $\frac{\bar{z}}{z}$ for any $z \in \mathbb{C}-\{0\}$

Answer: Choices (a), (b), (e), and (f) all lie on the unit circle since they have a modulus of one. For (b), we have

$$
\left|\frac{4}{5}-\frac{3}{5} i\right|=\sqrt{(4 / 5)^{2}+(-3 / 5)^{2}}=\sqrt{16 / 25+9 / 25}=1
$$

while for (e), we have

$$
\left|e^{i \sqrt{2} \theta}\right|=|\cos (\sqrt{2} \theta)+i \sin (\sqrt{2} \theta)|=\sqrt{\cos ^{2}(\sqrt{2} \theta)+\sin ^{2}(\sqrt{2} \theta)}=1
$$

For choice (f), note that

$$
\left|\frac{\bar{z}}{z}\right|=\frac{|\bar{z}|}{|z|}=\frac{|z|}{|z|}=1 .
$$

Choice (c) has a modulus of $\sqrt{10} / 5$ and choice (d) has a modulus of $\sqrt{2}$.
2. Let z be the complex number $z=-2+2 \sqrt{3} i$.
a) Write z in polar form, $z=r e^{i \theta}$. (4 pts.)

Answer: We have $r=|z|=\sqrt{(-2)^{2}+(2 \sqrt{3})^{2}}=\sqrt{4+12}=4$. By drawing a 30-60-90 triangle in the second quadrant, we find that $\operatorname{Arg}(z)=\pi-\pi / 3=2 \pi / 3$. Therefore, $z=4 e^{i \frac{2 \pi}{3}}$.
b) Using your answer to part a), find all of the roots $z^{1 / 4}$ in rectangular coordinates $x+i y$. Draw a sketch of the roots in the complex plane, including the polygon whose vertices are located at the roots. (10 pts.)

Answer: The roots are

$$
\pm \sqrt{2}\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right) \quad \text { and } \quad \pm \sqrt{2}\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) .
$$

Using the polar form of z, we find that

$$
\begin{aligned}
\left(4 e^{i \frac{2 \pi}{3}}\right)^{1 / 4} & =4^{1 / 4} \cdot e^{i\left(\frac{2 \pi}{12}+\frac{2 \pi k}{4}\right)}, \quad k=0,1,2,3 \\
& =\sqrt{2} e^{i\left(\frac{\pi}{6}+\frac{\pi k}{2}\right)}, \quad k=0,1,2,3 \\
& =\sqrt{2} e^{i \frac{\pi}{6}}, \sqrt{2} e^{i \frac{2 \pi}{3}}, \sqrt{2} e^{i \frac{7 \pi}{6}}, \sqrt{2} e^{i \frac{5 \pi}{3}} \\
& =\sqrt{2} e^{i \frac{\pi}{6}}, \sqrt{2} e^{i \frac{2 \pi}{3}},-\sqrt{2} e^{i \frac{\pi}{6}},-\sqrt{2} e^{i \frac{2 \pi}{3}}
\end{aligned}
$$

using the fact that $e^{i \pi}=-1$. Converting these polar expressions into rectangular coordinates using Euler's formula gives the answer above. The four roots form a square in the complex plane that is rotated 30° ccw from the positive x-axis and lies on the circle of radius $\sqrt{2}$ centered at the origin.

3. $[13$ pts.] Sets in \mathbb{C}

(a) Let R be the set $\{z \in \mathbb{C}: \operatorname{Re}(z)=1, \pi \leq \operatorname{Im}(z) \leq 2 \pi\}$. Sketch the set R in the complex plane. Then sketch and describe the image of R under the map $f(z)=e^{z}$. Be sure to label your graphs and axes carefully.

Answer:

The set R is simply a line segment with real part equal to 1 and imaginary part between π and 2π. Using the fact that $e^{z}=e^{x} \cdot e^{i y}$, we see that the image of R under e^{z} is a semi-circle of radius $e^{1}=e$ with angles ranging between π and 2π as shown.
(b) Describe in words and sketch the set of points $z \in \mathbb{C}$ satisfying the equation

$$
|z-i|=|z-1|
$$

Answer:

Recall that $\left|z_{1}-z_{2}\right|$ represents the distance between the two complex numbers z_{1} and z_{2}. Thus, the set of $z \in \mathbb{C}$ satisfying $|z-i|=|z-1|$ is the set of all complex numbers that are equidistant from 1 and i in the complex plane. This is the perpendicular bisector of the line segment between 1 and i, or the set of points whose real and imaginary parts are equal:

$$
\{z \in \mathbb{C}: \operatorname{Re}(z)=\operatorname{Im}(z)\} \quad \text { or } \quad\{z=x+i y: y=x\}
$$

Alternatively, we have $|z-i|=|x+i(y-1)|=\sqrt{x^{2}+(y-1)^{2}}$ and $|z-1|=|(x-1)+i y|=$ $\sqrt{(x-1)^{2}+y^{2}}$. Solving $\sqrt{x^{2}+(y-1)^{2}}=\sqrt{(x-1)^{2}+y^{2}}$ yields

$$
x^{2}+(y-1)^{2}=(x-1)^{2}+y^{2} \quad \Longrightarrow \quad x^{2}+y^{2}-2 y+1=x^{2}-2 x+1+y^{2},
$$

which simplifies to $y=x$.
4. [12 pts.] Use the $\epsilon-\delta$ definition of the limit to prove rigorously that $\lim _{z \rightarrow 4 i} 3 i \bar{z}-7=5$.

Answer: Let $\epsilon>0$ be given. If $f(z)=3 i \bar{z}-7$ and $w=5$, we want to find a $\delta=\delta(\epsilon)$ so that $|f(z)-w|<\epsilon$ whenever $0<|z-4 i|<\delta$. Using properties of modulus and conjugate, we have

$$
\begin{aligned}
|f(z)-w| & =|3 i \bar{z}-7-5| \\
& =|3 i \bar{z}-12| \\
& =|3 i(\bar{z}+4 i)| \\
& =|3 i| \cdot|\bar{z}+4 i| \\
& =3 \cdot|\overline{\bar{z}+4 i}| \\
& =3|z-4 i| .
\end{aligned}
$$

Choose $\delta=\epsilon / 3$. Then,

$$
|f(z)-w|=3|z-4 i|<3 \delta=3 \cdot \frac{\epsilon}{3}=\epsilon
$$

whenever $0<|z-4 i|<\delta$. QED
5. [14 pts.] Evaluate the following limits, if they exist. Show your work, making sure to justify your answers thoroughly.
(a) $\lim _{z \rightarrow \infty} \frac{6 i\left(z^{2}+1\right)}{(3 z-i)^{2}}$

Answer: $2 i / 3$. Using the LIPI theorem, and later the BLT, we have

$$
\begin{aligned}
\lim _{z \rightarrow \infty} \frac{6 i\left(z^{2}+1\right)}{(3 z-i)^{2}} & =\lim _{z \rightarrow \infty} \frac{6 i z^{2}+6 i}{9 z^{2}-6 i z-1} \\
& =\lim _{z \rightarrow 0} \frac{6 i\left(\frac{1}{z}\right)^{2}+6 i}{9\left(\frac{1}{z}\right)^{2}-6 i \cdot \frac{1}{z}-1} \\
& =\lim _{z \rightarrow 0} \frac{6 i+6 i z^{2}}{9-6 i z-z^{2}} \\
& =\frac{6 i+0}{9-0-0}=\frac{6 i}{9}=\frac{2 i}{3}
\end{aligned}
$$

(b) $\lim _{z \rightarrow 0} \frac{\operatorname{Im}(z)}{z}$

Answer: This limit does not exist, which can be seen by taking the limit in the real and imaginary directions. Suppose $z=x$ (so $y=0$) and we take the limit along the real axis. Then,

$$
\lim _{z \rightarrow 0} \frac{\operatorname{Im}(z)}{z}=\lim _{x \rightarrow 0} \frac{0}{x}=\lim _{x \rightarrow 0} 0=0
$$

On the other hand, if z is pure imaginary, $z=i y$ (so $x=0$), we obtain

$$
\lim _{z \rightarrow 0} \frac{\operatorname{Im}(z)}{z}=\lim _{y \rightarrow 0} \frac{y}{i y}=\lim _{y \rightarrow 0} \frac{1}{i}=\frac{1}{i}=-i .
$$

Since the two limits do not agree, the limit does not exist.
6. [18 pts.] For each of the functions below, find the points in the complex plane (if any) where $f^{\prime}(z)$ exists and give a formula (simplified) for the derivative at those points.
(a) $f(z)=x^{2}+3 y^{2}+i(2 x y+\cos (4 x))$.

Answer: We have $u(x, y)=x^{2}+3 y^{2}$ and $v(x, y)=2 x y+\cos (4 x)$. Checking the Cauchy-Riemann equations, we have

$$
u_{x}=2 x=v_{y}
$$

but $u_{y}=6 y$ and $v_{x}=2 y-4 \sin (4 x)$. Solving the equation $u_{y}=-v_{x}$ yields

$$
6 y=-2 y+4 \sin (4 x) \quad \text { or } \quad y=\frac{1}{2} \sin (4 x)
$$

Since the partial derivatives exist and are continuous on the whole plane, the SCD theorem guarantees that $f^{\prime}(z)$ exists for all complex numbers $z=x+i y$ satisfying $y=\frac{1}{2} \sin (4 x)$.
To compute the value of the derivative at these points, we find that

$$
f^{\prime}(z)=u_{x}+i v_{x}=2 x+i(2 y-4 \sin (4 x))=2 x-i 3 \sin (4 x) \text { or } 2 x-i 6 y .
$$

(b) $f(z)=(\bar{z})^{2}+i z$

Answer: First we compute the real and imaginary parts of f by substituting in $z=$ $x+i y$. This gives

$$
f(z)=(x-i y)^{2}+i(x+i y)=x^{2}-y^{2}-2 x y i+x i-y=x^{2}-y^{2}-y+i(x-2 x y)
$$

so that $u=x^{2}-y^{2}-y$ and $v=x-2 x y$. Checking the Cauchy-Riemann equations, we have $u_{x}=2 x$ and $v_{y}=-2 x$ so that $u_{x}=v_{y}$ gives

$$
2 x=-2 x \quad \Longrightarrow \quad x=0 .
$$

Similarly, we have $u_{y}=-2 y-1$ and $v_{x}=1-2 y$ so that $u_{y}=-v_{x}$ implies

$$
-2 y-1=-1+2 y \quad \Longrightarrow \quad y=0 .
$$

Thus, $f^{\prime}(z)$ can only exist at the origin $(0,0)$ or $z=0$. By the SCD Theorem, since the partial derivatives are continuous at the origin, we know that $f^{\prime}(0)$ exists and is found via

$$
f^{\prime}(0)=u_{x}(0,0)+i v_{x}(0,0)=0+i \cdot 1=i .
$$

7. [16 pts.] Complex Analysis Potpourri:

(a) Give an example of two complex numbers z_{1}, z_{2} such that $\operatorname{Arg}\left(z_{1} z_{2}\right) \neq \operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$.

Answer: The key is to take complex numbers whose real part is negative. For instance, if $z_{1}=-1+i$ and $z_{2}=-1$, then

$$
\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}(1-i)=-\frac{\pi}{4}
$$

but

$$
\operatorname{Arg}\left(z_{1}\right)=\frac{3 \pi}{4}, \operatorname{Arg}\left(z_{2}\right)=\pi \quad \text { implies } \operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)=\frac{7 \pi}{4} \neq-\frac{\pi}{4}
$$

Other examples include $z_{1}=-1$ and $z_{2}=i$, and even simply $z_{1}=z_{2}=-1$.
(b) Which point on the Riemann sphere corresponds to ∞ ?

Answer: The North Pole.
(c) If the Cauchy-Riemann equations are satisfied for the function $f(z)$ at the point z_{0}, then $f^{\prime}\left(z_{0}\right)$ exists.
Answer: This statement is FALSE. Just satisfying the Cauchy-Riemann equations alone is not enough to guarantee differentiability. The partial derivatives must also be continuous at z_{0}.
(d) If $f(z)=u(r, \theta)+i v(r, \theta)$, what are the Cauchy-Riemann equations in polar form?

Answer: $r u_{r}=v_{\theta}$ and $-r v_{r}=u_{\theta}$.
(e) Suppose that $u(x, y)$ is a function of two variables. State the limit definition of $u_{y}(1,2)$.

Answer:

$$
u_{y}(1,2)=\lim _{h \rightarrow 0} \frac{u(1,2+h)-u(1,2)}{h}
$$

