MATH 305 Complex Analysis, Spring 2016

Important Functions and Their Properties

Worksheet for Chapter 3

The following are some key complex functions along with their significant properties. This material, some of which has already been discussed in class, is covered in Chapter 3 of the course text. You should read the worksheet carefully and complete the exercises.

The Exponential Function

$$e^{z} = e^{x+iy} = e^{x} \cdot e^{iy} = e^{x}(\cos y + i\sin y) = e^{x}\cos y + ie^{x}\sin y$$

- 1. $|e^z| = e^x$ and $\arg(e^z) = y + 2\pi n, n \in \mathbb{Z}$
- $2. e^{z_1} \cdot e^{z_2} = e^{z_1 + z_2}$
- 3. $\frac{d}{dz}(e^z) = e^z$
- 4. e^z is **periodic** with period $2\pi i$, that is $e^{z+2\pi i} = e^z \quad \forall z \in \mathbb{C}$.
- 5. The range of e^z is $\mathbb{C} \{0\}$.

The Logarithmic Function

$$\log z = \ln |z| + i \arg(z) = \ln r + i(\theta + 2\pi n), \ n \in \mathbb{Z}$$
 (where $z = re^{i\theta}$)
 $\operatorname{Log} z = \ln |z| + i \operatorname{Arg}(z) = \ln r + i \theta$, (where $z = re^{i\theta}$ and $-\pi < \theta \le \pi$)

- 1. $\log z$ is a multiple-valued function while $\operatorname{Log} z$, the principal value of $\log z$, is single valued.
- 2. $e^{\log z} = z$ for **any** value of $\log z$.
- 3. The domain of $\log z$ and $\operatorname{Log} z$ is $\mathbb{C} \{0\}$.
- 4. $\log(e^z) = z + i 2\pi n, \ n \in \mathbb{Z}$
- 5. If z = x + iy is chosen so that $-\pi < y \le \pi$, then $Log(e^z) = z$ (see Exercise #8 on p. 97).

1

- 6. For **some** value of each logarithm,
 - $\bullet \ \log(z_1 z_2) = \log z_1 + \log z_2$
 - $\log\left(\frac{z_1}{z_2}\right) = \log(z_1) \log(z_2)$
 - $\log(z^n) = n \log z, \ n \in \mathbb{Z},$

but these properties do not hold generally.

- 7. $z^n = e^{n \log z}$, $n \in \mathbb{Z}$ holds for **all** values of $\log z$.
- 8. $z^{1/n} = e^{\frac{1}{n}\log z}, \ n \in \mathbb{Z} \{0\}$

Exercise 0.1 *Let* $z = 3 - 3\sqrt{3}i$.

(a) Compute $\log z$ and $\log z$.

(b) Compute $e^{\log z}$ and $\operatorname{Log}(e^z)$. Conclude that $e^{\log z} = z$, but in this case, $\operatorname{Log}(e^z) \neq z$.

Exercise 0.2 Verify that $z^n = e^{n \log z}$, $n \in \mathbb{Z}$ is true for all values of $\log z$. Start by writing $z = re^{i\theta}$.

Branches of the Logarithmic Function

$$\log z = \ln r + i\theta$$
, where $z = re^{i\theta}$ and $\alpha < \theta < \alpha + 2\pi$, $\alpha \in \mathbb{R}$ a fixed angle $\log z = \ln r + i\theta$, where $z = re^{i\theta}$ and $-\pi < \theta < \pi$

- 1. In general, a **branch** of a multiple-valued function is a choice or restriction that makes the function single-valued and analytic on the given domain. The given definition of $\log z$ above is analytic on the domain $\mathbb{C} \{re^{i\alpha} : r \geq 0\}$, which is the complex plane minus the ray at angle α . Recall that we must delete this ray in order to make the logarithm continuous. The ray $\theta = \alpha$ is called a **branch cut**.
- 2. As defined above, Log z is known as the **principle branch** of $\log z$. Its domain is the complex plane minus the negative real axis.
- 3. Using the polar form of the Cauchy-Riemann equations, it is straight-forward to show that $\frac{d}{dz}(\log z) = \frac{1}{z}$ and $\frac{d}{dz}(\operatorname{Log} z) = \frac{1}{z}$ on their domains of definition.

Complex Exponents

The fact that $z^n = e^{n \log z}$, $n \in \mathbb{Z}$ motivates the following definition for complex exponents.

Definition 0.3 For any $z \neq 0$ and for any $c \in \mathbb{C}$, the multiple-valued function z^c (sometimes single-valued) is defined by

$$z^c = e^{c \log z}.$$

where $\log z = \ln |z| + i \arg(z)$ is the multiple-valued logarithm. The **principal value** of z^c is

$$z^c = e^{c \operatorname{Log} z},$$

where Log z is the principal value of the logarithm function.

Note: For each $n \in \mathbb{Z}$, $z^n = e^{n \log z}$ outputs one value, the usual value of the power function. In other words, the usual definitions of $z, z^{-1}, z^2, z^{-2}, \ldots$ are unchanged by this new definition. Similarly, $z^{1/n}$ still outputs the n roots of the complex number z. Otherwise, there are an infinite number of values of z^c unless a particular branch or value of the logarithmic function is specified.

Exercise 0.4 Show that $(-2)^i = e^{-\pi(2n+1)}[\cos(\ln 2) + i\sin(\ln 2)]$, $n \in \mathbb{Z}$. Conclude that the values of $(-2)^i$ all lie on the ray $\theta = \ln 2 \approx 40^\circ$. What is the principal value of $(-2)^i$?

Branches of z^c

Since the definition of z^c depends on $\log z$, we must choose a branch of $\log z$ in order to make z^c an analytic function. The natural choice is to restrict the logarithm by deleting the ray $\theta = \alpha$ for some fixed $\alpha \in \mathbb{R}$.

Theorem 0.5 For a fixed $\alpha \in \mathbb{R}$, the branch of the function z^c defined as

$$z^c = e^{c \log z}$$
, where $\log z = \ln r + i\theta$, $\alpha < \theta < \alpha + 2\pi$,

is analytic on its domain and $\frac{d}{dz}(z^c) = cz^{c-1}$. (The Power Rule holds for any complex exponent!)

Proof: With the given branch and branch cut for $\log z$, we know that $\log z$ is analytic and that $\frac{d}{dz}(\log z) = \frac{1}{z}$. Since e^z is analytic on all of \mathbb{C} , z^c is analytic on its domain since it is the composition of two analytic functions (chain rule). We have

$$\frac{d}{dz}(z^c) = e^{c\log z} \cdot c \cdot \frac{1}{z} \quad \text{(chain rule)}$$

$$= c \cdot \frac{e^{c\log z}}{e^{\log z}} \quad \text{since } e^{\log z} = z \text{ holds } \forall z \in \mathbb{C}$$

$$= c \cdot e^{c\log z - \log z} \quad \text{by property 2 of } e^z$$

$$= c \cdot e^{(c-1)\log z} \quad \text{factor out the log } z$$

$$= cz^{c-1} \quad \text{using the definition of } z^c. \quad QED$$

For example, if $f(z) = z^i$ is defined appropriately, then $f'(z) = iz^{i-1}$.

Trigonometric Functions

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 and $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ $\forall z \in \mathbb{C}$

The remaining four trig functions are defined as usual: $\tan z = \frac{\sin z}{\cos z}$, $\sec z = \frac{1}{\cos z}$, etc.

- 1. The definitions for $\cos z$ and $\sin z$ are inspired by Euler's formula. Replacing z by θ in each of the above formulas and using $e^{i\theta} = \cos \theta + i \sin \theta$ gives true statements.
- 2. Both $\cos z$ and $\sin z$ are entire functions (analytic on all of $\mathbb C$) since e^{iz} and e^{-iz} are entire.
- 3. As expected, $\frac{d}{dz}(\sin z) = \cos z$ and $\frac{d}{dz}(\cos z) = -\sin z$.
- 4. $\cos(-z) = \cos z$ (even function) and $\sin(-z) = -\sin z$ (odd function).
- 5. Euler's formula holds for **any** complex number:

$$e^{iz} = \cos z + i \sin z \quad \forall z \in \mathbb{C}.$$

6. Most of the usual identities hold true:

$$\cos^{2} z + \sin^{2} z = 1$$

$$\sin(z_{1} + z_{2}) = \sin z_{1} \cos z_{2} + \cos z_{1} \sin z_{2}$$

$$\cos(z_{1} + z_{2}) = \cos z_{1} \cos z_{2} - \sin z_{1} \sin z_{2}$$

- 7. Both $\sin z$ and $\cos z$ are periodic of period 2π , that is, $\sin(z+2\pi)=\sin z$ and $\cos(z+2\pi)=\cos z$.
- 8. If z = x + iy, then

$$\cos z = \cos x \cosh y - i \sin x \sinh y$$

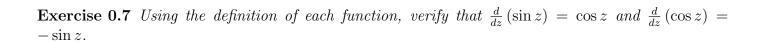
$$\sin z = \sin x \cosh y + i \cos x \sinh y,$$

where $\cosh y = (e^y + e^{-y})/2$ is the hyperbolic cosine function and $\sinh y = (e^y - e^{-y})/2$ is hyperbolic sine.

9. $|\cos z|^2 = \cos^2 x + \sinh^2 y$ and $|\sin z|^2 = \sin^2 x + \sinh^2 y$. This implies that, unlike the real case, both functions are unbounded since $\lim_{y \to \infty} \sinh y = \infty$.

4

Exercise 0.6 Compute $\cos(i)$ and $\sin(i)$ and verify that $\cos^2(i) + \sin^2(i) = 1$.



Exercise 0.8 Explain why $e^{iz} = \cos z + i \sin z$ holds for any complex number z.

Exercise 0.9 If z = x + iy, show that $\cos z = \cos x \cosh y - i \sin x \sinh y$ and that $|\cos z|^2 = \cos^2 x + \sinh^2 y$.