MATH 305 Complex Analysis, Spring 2016

Important Functions and Their Properties

Worksheet for Chapter 3

The following are some key complex functions along with their significant properties. This material,

some of which has already been discussed in class, is covered in Chapter 3 of the course text. You
should read the worksheet carefully and complete the exercises.

The Exponential Function

ef = "t = . e = e*(cosy +isiny) = e cosy+ ie’siny

. |e*] = e” and arg(e®) =y + 2mn,n € Z

L eFl . e*2 = €Z1+22

242mi

. €7 is periodic with period 27i, that is e e* VzeC.

. The range of e* is C — {0}.

The Logarithmic Function

.2

logz = In|z| +iarg(z) = Inr+i(0 +2mn), n € Z (where z = re®)

Logz = In|z| +iArg(z) = Inr +i6, (where z =re” and —7 <60 <)

. log z is a multiple-valued function while Log z, the principal value of log z, is single valued.
. €°8% = ~ for any value of log z.

. The domain of log z and Log z is C — {0}.

. log(e®*) =z+i2mn, n € Z

. If z = o + 4y is chosen so that —7 < y < 7, then Log(e*) = z (see Exercise #8 on p. 97).

. For some value of each logarithm,

e log(z122) = log 2 + log 25

o log (i> — log(z1) — log(z)

Z2
e log(z") =nlogz, n€Z,
but these properties do not hold generally.

= ™82 5 ¢ 7Z holds for all values of log z.

2 =enlsz ez — {0}



Exercise 0.1 Let z = 3 — 31/31.

(a) Compute log z and Log z.

(b) Compute €°5* and Log(e*). Conclude that €'°®* = z, but in this case, Log €* # z.

Exercise 0.2 Verify that 2" = e"'°¢% n € Z is true for all values of log z. Start by writing z = re'.

Branches of the Logarithmic Function
logz = Inr+if, where z=re” and a < § < a + 27, a € R a fixed angle
Logz = Inr+if, where z=re and —7 <0<

1. In general, a branch of a multiple-valued function is a choice or restriction that makes the
function single-valued and analytic on the given domain. The given definition of log z above is
analytic on the domain C — {re’® : r > 0}, which is the complex plane minus the ray at angle a.
Recall that we must delete this ray in order to make the logarithm continuous. The ray 6 = «
is called a branch cut.

2. As defined above, Log z is known as the principle branch of log z. Its domain is the complex
plane minus the negative real axis.

3. Using the polar form of the Cauchy-Riemann equations, it is straight-forward to show that
4 (logz) =1 and 4 (Logz) = 1 on their domains of definition.



Complex Exponents
The fact that 2" = e"°8* n € Z motivates the following definition for complex exponents.

Definition 0.3 For any z # 0 and for any ¢ € C, the multiple-valued function z¢ (sometimes single-
valued) is defined by

SC = eclogz’
where log z = In |z| + i arg(z) is the multiple-valued logarithm. The principal value of z¢ is

ZC — ecLng’

where Log z is the principal value of the logarithm function.

Note: For each n € Z, 2™ = ¢"!°8% outputs one value, the usual value of the power function. In other
words, the usual definitions of z, 271, 22, 22, ... are unchanged by this new definition. Similarly, z'/"
still outputs the n roots of the complex number z. Otherwise, there are an infinite number of values

of 2¢ unless a particular branch or value of the logarithmic function is specified.

Exercise 0.4 Show that (—2)" = e ™" D[cos(In2) + isin(In2)], n € Z. Conclude that the values of
(—2)" all lie on the ray 6 = In2 ~ 40°. What is the principal value of (—2)"?

Branches of z¢

Since the definition of 2 depends on log z, we must choose a branch of log z in order to make 2¢ an
analytic function. The natural choice is to restrict the logarithm by deleting the ray 6§ = « for some

fixed a € R.
Theorem 0.5 For a fixed o € R, the branch of the function z¢ defined as

c clog z

¢ =e , where logz = Inr+1i0, a <0 < a+ 2,
is analytic on its domain and d% (2¢) = c2°7L. (The Power Rule holds for any complex exponent!)

Proof: With the given branch and branch cut for logz, we know that log z is analytic and that
4 (logz) = 1. Since e is analytic on all of C, 2¢ is analytic on its domain since it is the composition
of two analytic functions (chain rule). We have

d 1
= (2°) = eolo8z .. = (chain rule)
z z
eclogz
= ¢ oy since €'°8* = z holds Vz € C
e
= . eclogzlogz by property 2 of e*
= ¢ eleDlos2 factor out the log z

= 27! using the definition of z¢. QED

For example, if f(z) = 2* is defined appropriately, then f’(z) =iz~
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Trigonometric Functions

eiz + e—iz ) eiz _ e—iz
cosz = ——  and sinz = —— VzeC
2 27
. . . inz
The remaining four trig functions are defined as usual: tan z = , secz = , etc.
COS 2 coS 2

1. The definitions for cos z and sin z are inspired by Euler’s formula. Replacing z by € in each of
the above formulas and using e? = cos + isin gives true statements.

2. Both cos z and sin z are entire functions (analytic on all of C) since e** and e~* are entire.
3. As expected, - (sinz) = cos z and £ (cos z) = —sin 2.

4. cos(—z) = cos z (even function) and sin(—z) = —sin z (odd function).

5. Euler’s formula holds for any complex number:

1z

e” = cosz+isinz VzeC.

6. Most of the usual identities hold true:

cos?z +sin’z = 1
sin(z; + z2) = sin z; cos zg + oS 27 sin 29
cos(z1 + z3) = €08 21 COS 23 — Sin 2 sin 2y

7. Both sin z and cos z are periodic of period 2, that is, sin(z+27) = sin z and cos(z 4 27) = cos z.

8. If z =2 + 1y, then

cosz = coszcoshy —isinxsinhy

sinz = sinxcoshy + icosxsinhy,

where coshy = (e¥ + e7¥)/2 is the hyperbolic cosine function and sinhy = (e¥ — e7¥)/2 is
hyperbolic sine.

9. |cosz|* = cos®x + sinh? y and |sin z|> = sin? z + sinh?y. This implies that, unlike the real case,
both functions are unbounded since lim sinhy = oc.

Yy—00

Exercise 0.6 Compute cos(i) and sin(i) and verify that cos?(i) + sin®(i) = 1.



Exercise 0.7 Using the definition of each function, verify that -t (sinz) = cosz and L (cosz) =
—sin 2.

Exercise 0.8 Explain why ¢ = cos z + isin z holds for any complex number z.

Exercise 0.9 If z = x + iy, show that cos z = cosxz coshy — ¢sinx sinhy and that
| cos z|> = cos® z + sinh? y.



