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Cauchy-Riemann Equations

Recall: The Cauchy-Riemann Equations must be satisfied in order for
a complex function f (z) = u(x , y) + i v(x , y) to be differentiable at a
point.

ux = vy , uy = −vx

They are derived by evaluating the limit definition of the derivative
approaching in the real direction and the pure imaginary direction, and
then equating the two results.

Let z0 = x0 + i y0. If f ′(z0) exists, then it’s value is ux + i vx , where each
partial is evaluated at (x0, y0).

Important: The Cauchy-Riemann equations are necessary conditions
for f ′(z0) to exist, but they are not sufficient.
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Main Theorem in the Section

Theorem (SCD – Sufficient Conditions for Differentiability)
Suppose that f (z) = u(x , y) + i v(x , y) is defined in a neighborhood of
z0 = x0 + i y0 and that

1 ux ,uy , vx , vy exist everywhere in the neighborhood,
2 ux = vy ,uy = −vx at (x0, y0), and
3 ux ,uy , vx , vy are continuous at (x0, y0).

Then f ′(z0) exists and f ′(z0) = ux(x0, y0) + i vx(x0, y0).

Note: It is possible to satisfy the Cauchy-Riemann equations at a point,
yet not be differentiable there (see Exercise #6 in Section 23 for such
an example – HW). The point of the theorem is that continuity of the
partial derivatives, not just satisfying the Cauchy-Riemann equations,
is also required to insure that the derivative f ′(z0) exists.
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Proof of SCD Theorem

Proof: Assume that the hypotheses of the theorem are true. We will
show that

lim
h→0

f (z0 + h)− f (z0)

h
= ux(x0, y0) + i vx(x0, y0),

thereby proving that the derivative exists and the value is the one given
in the theorem.

The proof relies on the multivariable version of Taylor’s Theorem. If
both partial derivatives of a function u(x , y) exist in a neighborhood of
(x0, y0) and are continuous at (x0, y0), then we can evaluate u nearby
using the expression

u(x0 + h1, y0 + h2) = u(x0, y0) + ux(x0, y0)h1 + uy (x0, y0)h2

+ α1(h1,h2)h1 + α2(h1,h2)h2

where α1 and α2 satisfy

lim
(h1,h2)→(0,0)

α1(h1,h2) = 0 and lim
(h1,h2)→(0,0)

α2(h1,h2) = 0.
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Proof of SCD Theorem continued

A similar expression exists for the function v(x , y) near (x0, y0).

v(x0 + h1, y0 + h2) = v(x0, y0) + vx(x0, y0)h1 + vy (x0, y0)h2

+ α3(h1,h2)h1 + α4(h1,h2)h2

where α3 and α4 satisfy

lim
(h1,h2)→(0,0)

α3(h1,h2) = 0 and lim
(h1,h2)→(0,0)

α4(h1,h2) = 0.

Step 1: Let ε > 0 be given. Since

lim
(h1,h2)→(0,0)

αj(h1,h2) = 0 ∀j ∈ {1,2,3,4},

there exists a δ > 0 such that, for each j ∈ {1,2,3,4},

|αj(h1,h2)| < ε/4 whenever 0 <
√

h2
1 + h2

2 < δ.
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Proof of SCD Theorem continued

Step 2: Expand the numerator of the difference quotient into real and
imaginary parts. We compute that f (z0 + h)− f (z0)

= u(x0 + h1, y0 + h2)− u(x0, y0) + i[v(x0 + h1, y0 + h2)− v(x0, y0)]

= ux(x0, y0)h1 + uy (x0, y0)h2 + i[vx(x0, y0)h1 + vy (x0, y0)h2]

+α1(h1,h2)h1 + α2(h1,h2)h2 + i[α3(h1,h2)h1 + α4(h1,h2)h2]

= ux(x0, y0)[h1 + i h2] + i vx(x0, y0)[h1 + i h2] (Cauchy-Riemann)
+ [α1(h1,h2) + i α3(h1,h2)]h1 + [α2(h1,h2) + i α4(h1,h2)]h2

Therefore, we have that f (z0+h)−f (z0)
h is equivalent to

ux(x0, y0) + i vx(x0, y0) + (α1 + i α3)
h1

h
+ (α2 + i α4)

h2

h
.
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Proof of SCD Theorem continued

Step 3: Bound the “error term." Using the fact that |h1/h| ≤ 1 and

|h2/h| ≤ 1, we have that
∣∣∣∣ f (z0 + h)− f (z0)

h
− [ux(x0, y0) + i vx(x0, y0)]

∣∣∣∣
=

∣∣∣∣(α1 + i α3)
h1

h
+ (α2 + i α4)

h2

h

∣∣∣∣
≤ |α1 + i α3|

∣∣∣∣h1

h

∣∣∣∣+ |α2 + i α4|
∣∣∣∣h2

h

∣∣∣∣
≤ |α1 + i α3| + |α2 + i α4|

≤ |α1|+ |α3|+ |α2|+ |α4|

<
ε

4
+
ε

4
+
ε

4
+
ε

4

= ε whenever 0 <
√

h2
1 + h2

2 = |h| < δ. QED
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An Important Example

Example: (In-class exercise)
Let

f (z) = ez = ex+i y = ex · ei y .

Show that f ′(z) exists for all z ∈ C and find a formula for f ′(z).
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