MATH 305 Complex Analysis

 Exam \#1 SOLUTIONS Prof. G. Roberts

 Exam \#1 SOLUTIONS Prof. G. Roberts}

1. [14 pts.] Quickies: No explanation required.
(a) A function that is analytic for all $z \in \mathbb{C}$ is called an entire function.
(b) The geometric object that helps complex analysts visualize limits involving infinity is called the Riemann sphere.
(c) Suppose that $f(z)=u(x, y)+i v(x, y)$ and that

$$
\lim _{z \rightarrow 3 i-2} f(z)=4-i
$$

Then,

$$
\lim _{(x, y) \rightarrow(-2,3)} v(x, y)=\underline{-1} .
$$

Answer: This is the CR limit theorem.
(d) If the Cauchy-Riemann equations are satisfied for the function $f(z)$ at the point z_{0}, then $f^{\prime}\left(z_{0}\right)$ exists. This statement is FALSE.
Answer: Just satisfying the Cauchy-Riemann equations alone is not enough to guarantee differentiability. The partial derivatives must also be continuous at z_{0}.
(e) Sketch the set of points $\{z \in \mathbb{C}:|2 \bar{z}-4 i|<4\}$ in the complex plane.

Answer: We compute

$$
|2 \bar{z}-4 i|=|\overline{2 \bar{z}-4 i}|=|2 z+4 i|=2|z+2 i|,
$$

so that the inequality simplifies to $|z+2 i|<2$. This is all points inside the circle of radius 2 centered at $z_{0}=-2 i$. See figure below - the boundary disk should be dotted since it is not included in the set.

2. [14 pts.] Circle all of the following complex numbers that lie on the unit circle. There may be anywhere from zero to six correct choices.
(a) $-i$
(b) $\frac{2}{3-i}$
(c) $\sqrt{2} e^{i \theta}$ for any $\theta \in \mathbb{R}$
(d) $e^{i \sqrt{2} \theta}$ for any $\theta \in \mathbb{R}$
(e) $\frac{\bar{z}}{z}$ for any $z \in \mathbb{C}-\{0\}$
(f) $\cos z+i \sin z$ for any $z \in \mathbb{C}$

Answer: Choices (a), (d), and (e) all lie on the unit circle since they have a modulus of one. For choice (e), note that

$$
\left|\frac{\bar{z}}{z}\right|=\frac{|\bar{z}|}{|z|}=\frac{|z|}{|z|}=1
$$

Choice (b) has a modulus of $2 / \sqrt{10}$, choice (c) has a modulus of $\sqrt{2}$ and choice (f) has a modulus of e^{-y} where $y=\operatorname{Im}(z)$. This last fact follows from

$$
\cos z+i \sin z=e^{i z}=e^{i(x+i y)}=e^{-y} \cdot e^{i x}
$$

3. [10 pts.] Find all the roots of $(-2+2 \sqrt{3} i)^{1 / 4}$ in rectangular coordinates. Draw a sketch of the roots in the complex plane.
Answer: The roots are

$$
\pm \sqrt{2}\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right) \quad \text { and } \quad \pm \sqrt{2}\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)
$$

First convert $-2+2 \sqrt{3}$ into polar coordinates, obtaining $4 e^{i \frac{2 \pi}{3}}$. Then we have

$$
\begin{aligned}
\left(4 e^{i \frac{2 \pi}{3}}\right)^{1 / 4} & =4^{1 / 4} \cdot e^{i\left(\frac{2 \pi}{12}+\frac{2 \pi k}{4}\right)}, \quad k=0,1,2,3 \\
& =\sqrt{2} e^{i\left(\frac{\pi}{6}+\frac{\pi k}{2}\right)}, \quad k=0,1,2,3 \\
& =\sqrt{2} e^{i \frac{\pi}{6}}, \sqrt{2} e^{i \frac{2 \pi}{3}}, \sqrt{2} e^{i \frac{7 \pi}{6}}, \sqrt{2} e^{i \frac{5 \pi}{3}} \\
& =\sqrt{2} e^{i \frac{\pi}{6}}, \sqrt{2} e^{i \frac{2 \pi}{3}},-\sqrt{2} e^{i \frac{\pi}{6}},-\sqrt{2} e^{i \frac{2 \pi}{3}}
\end{aligned}
$$

using the fact that $e^{i \pi}=-1$. Converting these polar expressions into rectangular coordinates using Euler's formula gives the answer above. The four roots form a square in the complex plane that is rotated 30° ccw from the positive x-axis and lies on the circle of radius $\sqrt{2}$ centered at the origin.
4. [10 pts.] Compute the following quantities. Be sure to show your work.
(a) Compute the principal value of i^{2+i}.

Answer: We compute

$$
i^{2+i}=e^{(2+i) \cdot \log (i)}=e^{(2+i)\left(\ln |i|+i \frac{\pi}{2}\right)}=e^{(2+i)\left(i \frac{\pi}{2}\right)}=e^{i \pi-\frac{\pi}{2}}=e^{i \pi} \cdot e^{-\frac{\pi}{2}}=-e^{-\frac{\pi}{2}}
$$

(b) Compute $\log (1-i)$ when the branch $\log z=\ln r+i \theta\left(r>0, \frac{3 \pi}{2}<\theta<\frac{7 \pi}{2}\right)$ is used.

Answer: First note that $\arg (1-i)=-\frac{\pi}{4}+2 \pi n$ with $n \in \mathbb{Z}$. Using the definition of the branch given, we choose $n=1$ and find that $\theta=\frac{7 \pi}{4}$ which is the only choice of the argument that lies in the stated interval. Then, we have

$$
\log (1-i)=\ln |1-i|+i \frac{7 \pi}{4}=\ln \sqrt{2}+i \frac{7 \pi}{4}=\frac{1}{2} \ln 2+i \frac{7 \pi}{4}
$$

5. [12 pts.] Evaluate the following limits, if they exist. Show your work, making sure to justify your answers thoroughly.
(a) $\lim _{z \rightarrow \infty} \frac{3 i\left(z^{2}+1\right)}{(3 z-i)^{2}}$

Answer: Using the LIPI theorem, and later the BLT, we have

$$
\begin{aligned}
\lim _{z \rightarrow \infty} \frac{3 i\left(z^{2}+1\right)}{(3 z-i)^{2}} & =\lim _{z \rightarrow 0} \frac{3 i\left(\frac{1}{z^{2}}+1\right)}{\left(\frac{3}{z}-i\right)^{2}} \\
& =\lim _{z \rightarrow 0} \frac{3 i\left(1+z^{2}\right)}{(3-i z)^{2}} \\
& =\frac{3 i \cdot(1+0)}{(3-0)^{2}}=\frac{3 i}{9}=\frac{i}{3}
\end{aligned}
$$

(b) $\lim _{z \rightarrow 0} \frac{\operatorname{Re}(z)}{z}$

Answer: This limit does not exist, which can be seen by taking the limit in the real and imaginary directions. Suppose $z=x$ and we take the limit along the real axis. Then,

$$
\lim _{z \rightarrow 0} \frac{\operatorname{Re}(z)}{z}=\lim _{x \rightarrow 0} \frac{x}{x}=\lim _{x \rightarrow 0} 1=1
$$

On the other hand, if z is pure imaginary, $z=i y$, we obtain

$$
\lim _{z \rightarrow 0} \frac{\operatorname{Re}(z)}{z}=\lim _{y \rightarrow 0} \frac{0}{i y}=\lim _{y \rightarrow 0} 0=0
$$

Since the two limits do not agree, the limit does not exist.
6. [12 pts.] Consider the function $f(z)=x^{2}+3 y^{2}+i(2 x y+\cos (4 x))$.
(a) Find the points in the complex plane (if any) where $f^{\prime}(z)$ exists and give a formula for the derivative at those points.
Answer: We have $u(x, y)=x^{2}+3 y^{2}$ and $v(x, y)=2 x y+\cos (4 x)$. Checking the Cauchy-Riemann equations, we have

$$
u_{x}=2 x=v_{y}
$$

but $u_{y}=6 y$ and $v_{x}=2 y-4 \sin (4 x)$. Solving the equation $u_{y}=-v_{x}$ yields

$$
6 y=-2 y+4 \sin (4 x) \quad \text { or } \quad y=\frac{1}{2} \sin (4 x)
$$

Since the partial derivatives exist and are continuous on the whole plane, the SCD theorem guarantees that $f^{\prime}(z)$ exists for all complex numbers $z=x+i y$ satisfying $y=\frac{1}{2} \sin (4 x)$.
To compute the value of the derivative at these points, we find that

$$
f^{\prime}(z)=u_{x}+i v_{x}=2 x+i(2 y-4 \sin (4 x))=2 x-i 3 \sin (4 x)=2 x-i 6 y
$$

(b) Find the points in the complex plane (if any) where $f(z)$ is analytic. Explain.

Answer: The function $f(z)$ is nowhere analytic. Any neighborhood of any point on the curve $y=\frac{1}{2} \sin (4 x)$ will contain points not on the curve. Consequently, for any point z_{0} on the curve where $f^{\prime}(z)$ exists, and for any neighborhood of $z_{0}, f^{\prime}(z)$ does not exist at all points in the neighborhood. By definition, $f(z)$ is nowhere analytic.
7. [12 pts.] Consider the function $g(z)=e^{4+i z}$. Show that g is analytic on the entire complex plane in two different ways. First, use a well-known theorem about analytic functions. Second, use the SCD (Sufficient Conditions for Differentiability) Theorem.
Answer: First, since both e^{z} and $4+i z$ (linear function) are analytic on the entire complex plane, so is $g(z)$, as the composition of analytic functions is analytic.

Next, we expand g into real and imaginary parts. We have

$$
g(z)=e^{4+i z}=e^{4} \cdot e^{i(x+i y)}=e^{4} \cdot e^{i x} \cdot e^{-y}=e^{4-y}(\cos x+i \sin x),
$$

so that $u(x, y)=e^{4-y} \cos x$ and $v(x, y)=e^{4-y} \sin x$. We compute that

$$
u_{x}=-e^{4-y} \sin x=v_{y} \quad \text { and } \quad u_{y}=-e^{4-y} \cos x=-v_{x}
$$

so that the Cauchy-Riemann equations are satisfied on all of \mathbb{C}. Since the partial derivatives are continuous on the entire plane, the SCD theorem then implies that $f^{\prime}(z)$ exists for all $z \in \mathbb{C}$.
8. [16 pts.] TRUE or FALSE. If the statement is true, provide a proof. If the statement is false, provide a counterexample.
(a) $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$ for any $z_{1}, z_{2} \in \mathbb{C}$.

Answer: FALSE. Take $z_{1}=-1+i$ and $z_{2}=-1$. Then

$$
\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}(1-i)=-\frac{\pi}{4}
$$

but

$$
\operatorname{Arg}\left(z_{1}\right)=\frac{3 \pi}{4}, \operatorname{Arg}\left(z_{2}\right)=\pi \quad \text { implies } \operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)=\frac{7 \pi}{4} \neq-\frac{\pi}{4}
$$

(b) If $z \in \mathbb{C}-\{0\}$, then $e^{\log z}=z$ for any value of the multiple-valued function $\log z$.

Answer: TRUE. Suppose that θ is a representative for the argument of z. We have

$$
\begin{aligned}
e^{\log z} & =e^{\ln |z|+i(\theta+2 \pi n)}, \text { where } n \in \mathbb{Z} \\
& =e^{\ln |z|} \cdot e^{i \theta} \cdot e^{i 2 \pi n} \\
& =|z| e^{i \theta} \quad \text { since } e^{i 2 \pi n}=1 \text { for } n \in \mathbb{Z} \\
& =z . \quad \text { QED }
\end{aligned}
$$

Note that $z \neq 0$ is important to assume since $\log 0$ is undefined.

