
MATH 304, Ordinary Differential Equations, Fall 2014

Lab Project #3

Investigating a 3D Economic Model

DUE DATE: Friday, Dec. 5, 4:30 pm

The goal of this project is to apply techniques for investigating nonlinear systems (linearization
about equilibrium points, bifurcation theory, solution curves, etc.) to an idealized macroeconomic
model with foreign capital investment. For this project you will need to do several computations
by hand and use MAPLE to visualize solution curves in three dimensions. You will discover some
interesting phenomena that occur in the given model.

It is required that you work in a group of two or three people. Any help you receive from a source
other than your lab partner(s) should be acknowledged in your report. For example, a textbook, web
site, another student, etc. should all be appropriately referenced at the end of your report. The project
should be typed although you do not have to typeset your mathematical notation. For example, you
can leave space for a graph, computations, tables, etc. and then write it in by hand later. You can
also include graphs or computations in an appendix at the end of your report. Your presentation is
important and I should be able to clearly read and understand what you are saying. Only one project
per group need be submitted.

A Three-dimensional Economic Model

Consider the following autonomous, nonlinear, three-dimensional system of differential equations:

dx

dt
= ay + px(k − y2)

dy

dt
= v(x+ z)

dz

dt
= mx− ry,

where x, y, z are the dependent variables, and a, p, k, v,m, r are parameters. This system can be
viewed as an extension of a famous ODE known as van der Pol’s equation. It can be used as an
idealized macroeconomic model with foreign capital investment, where x represents the savings of
households in a given country, y is the Gross Domestic Product (GDP), and z measures the foreign
capital inflow (investment into the country). The six parameters are always considered to be positive.
They represent:

a = variation of the marginal propensity to savings,

p = ratio of the capitalized profit,

k = potential GDP,

v = output/capital ratio,

m = capital inflow/savings ratio,

r = ratio of debt refund to output.
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From an economic perspective, the condition a > vr means that the country’s economy is strong
enough to refund its debt. In practice, v is usually much smaller than one (it takes large amounts of
capital to produce any output), so a stronger, more imposing condition is a > r. We will see that the
condition a = r is a key bifurcation value, with strong implications for the types of solutions to the
model. This system can also be used to model a firm’s profits, where x represents reinvestments, y is
profit, and z is debt.

Lab Questions

1. Show that the system of differential equations has precisely three equilibrium points:

E0 = (0, 0, 0), E1 = (
√
c ,
√
d ,−
√
c ), E2 = (−

√
c ,−
√
d ,
√
c ),

where

c =
amr + kpr2

pm2
and d =

am+ kpr

pr
.

You should do this calculation by hand. Do any of the equilibrium points make sense in terms
of the model? Explain.

2. We would like to linearize the system about each equilibrium point. This will yield a 3×3 matrix
in each case. Before we do this, let’s explore what happens when we consider linear systems in
dimensions greater than two.

As before, the key qualitative features all depend on the eigenvalues of the matrix, except there
are now 3 eigenvalues, as opposed to just 2. Thus, we could have a pair of complex eigenvalues
with a positive real part (spiral source) and a negative real eigenvalue (sink) together in the same
system (a spiral source/sink?). As before, a real eigenvalue λ and corresponding eigenvector v
generate a straight-line solution in the phase space (three-dimensional) given by Y(t) = eλtv.
Many of the same concepts from 2× 2 systems generalize to higher dimensions. (See Section 3.8
of the course text for more details.)

Consider the following three matrices and their associated linear systems (b is a parameter):

A =

 0 1 0
−1 0 0

0 0 b

 , B =

 −0.1 1 0
−1 −0.1 0

0 0 b

 , C =

 −0.1 0 0
1 −1.1 0
2 0 −2.1

 .
a. Find the eigenvalues of each matrix.

b. Use MAPLE to explore the solutions to each system in xyz-space. How do the solutions
match up with the eigenvalues? Explain the types of solution curves obtained and why
they occur. Turn in a plot for each example showing some sample solution curves. You
should try varying the parameter b for small values near 0 (e.g., b = −0.1 versus b = 0.1).
What effect does the sign of b have on the types of solutions in examples A and B?

c. Find the eigenvectors for matrix C. How do the eigenvectors help explain the graphs of
solution curves?
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3. Linearize the system about the equilibrium point E0 = (0, 0, 0).

a. Give the Jacobian matrix and show that the characteristic polynomial is p(λ) = λ3 + αλ2 +
βλ+ γ, where α = −kp, β = v(r − a), and γ = −v(rpk + am).

b. Notice that if a > r is assumed, then all three coefficients α, β, and γ are negative. (Recall
that all our parameters are considered to be positive.) Explain why this implies that there
is at least one positive eigenvalue for the associated linear system. What does this mean
for a typical solution curve of the full system if it begins near the origin?

4. Linearize the system about the equilibrium point E1 = (
√
c ,
√
d ,−
√
c ). (The equilibrium point

E2 gives the same linearization.)

a. Give the Jacobian matrix and show that the characteristic polynomial is p(λ) = λ3 + αλ2 +
βλ+ γ, where

α =
am

r
,

β = v

(
r + a+

2rpk

m

)
,

γ = 2v(am+ rpk).

b. Notice that in this case, all three coefficients α, β, and γ are positive. While it is difficult to
apply the formula for the roots of a cubic, it is possible to show that in this case, all of the
roots of p(λ) have negative real parts if a > r. In other words, if a > r, then each eigenvalue
is either real and negative, or complex with a negative real part. Check the veracity of this
statement by finding the eigenvalues (use MAPLE) in the following two cases:

(i) a = 0.61, r = 0.6, m = 0.5, p = 0.4, v = 0.8, k = 1 ,

(ii) a = 0.59, r = 0.6, m = 0.5, p = 0.4, v = 0.8, k = 1 .

c. Given the statement about the eigenvalues in part b., how do you expect a solution in the
full system to behave for the case a > r if it starts near either E1 or E2?

5. The case a = r corresponds to a special type of bifurcation known as a Hopf bifurcation. The
behavior of solutions on either side of a Hopf bifurcation can be very interesting and complicated.
Show that if a = r is assumed, then the characteristic polynomial for E1 factors into

p(λ) = (λ+m)

(
λ2 + 2vr

(
1 +

pk

m

))
.

Conclude that E1 has one negative real eigenvalue and a pair of pure imaginary eigenvalues.
Where have we seen this type of linear system before?
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6. Use MAPLE and some of the results from the previous questions to investigate the solutions to
the full system for the parameter values in the following cases:

(i) a = 0.26, r = 0.25, m = 0.2, p = 0.1, v = 0.5, k = 1 ,

(ii) a = 0.1, r = 0.25, m = 0.2, p = 0.1, v = 0.5, k = 1 ,

(iii) a = 0.26, r = 0.25, m = 0.2, p = 0.01, v = 0.03, k = 1 ,

(iv) a = 0.1, r = 0.25, m = 0.2, p = 0.01, v = 0.03, k = 1 .

In each case, be sure to investigate the behavior of solutions for a variety of initial conditions. You
may need to increase the length of time plotted to obtain valid conclusions, although sometimes
MAPLE will not allow you to do this. Interpret your findings in terms of the economic model.
Feel free to turn in any particularly revealing plots that you generate.

Reference: Lenka Pribylová, Bifurcation Routes to Chaos in an Extended Van Der Pol’s Equation
Applied to Economic Models, Electronic Journal of Differential Equations, Vol. 2009 (2009), No. 53,
1–21.
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