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2. To compute the general solution of the unforced equation, we use the method of Section 3.6. The
characteristic polynomial is
52 + 65 + 8,
so the eigenvalues are s = —2 and s = —4. Hence, the general solution of the homogeneous equation

15
ﬂ']é’_zf + ,3(23_‘” .

To find a particular solution of the forced equation, we guess y, (1) = ke3'. Substituting into
the left-hand side of the differential equation gives

d>yp | dvp 3t 3t 3¢
o2 + 6? +8yp =%e ~ — 18ke ™ + 8ke
= ke,
In order for y,(¢) to be a solution of the forced equation, we must take £ = —2. The general solution

of the forced equation is
v(r) = kle_m —|—R'ge_4r _ 27,

5. To compute the general solution of the unforced equation, we use the method of Section 3.6. The
characteristic polynomial is
s? 4+ 4s 413,

so the eigenvalues are s = —2 &+ 3i. Hence, the general solution of the homogeneous equation is
kye= cos 3t 4 kye> sin 31.

To find a particular solution of the forced equation, we guess y, (1) = ke—2!. Substituting into
the left-hand side of the differential equation gives

d 2."'p dyp _2t ¢ 27—t
F+4F—|—l3‘,p = dke — 8ke + 13ke
= 9ke .
In order for y,(7) to be a solution of the forced equation, we must take ¥ = —1/3. The general
solution of the forced equation is

(1) = kye= cos 3t 4 kye > sin3t — %e_m.
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6. To compute the general solution of the unforced equation, we use the method of Section 3.6. The
characteristic polynomial is
s 4+7s + 10,

so the eigenvalues are s = —2 and s = —5. Hence, the general solution of the homogeneous equation
is
kre™ 4 kpe™.

To find a particular solution of the forced equation, a reasonable looking guess is y,(7) = ket

However, this guess is a solution of the homogeneous equation, so it is doomed to fail. We make
the standard second guess of y, (1) = kte—2'. Substituting into the left-hand side of the differential
equation gives
2. ,
d-y, dyp

+7—=2 4 10y, = (—4ke™> + dkte™") + T(ke™ > — 2kte™) + 10kte™
dr2 di 2

= 3ke .
In order for y,(r) to be a solution of the forced equation, we must take £ = 1/3. The general solution

of the forced equation 1s

—5t

y(t) =kie ™ + ke + %e‘e_z’.

11. This is the same equation as Exercise 5. The general solution is
v(t) = k1e % cos 3t 4+ kre 2 sin3r — %e—zr_
To find the solution with the initial conditions y(0) = y'(0) = 0, we compute
V(1) = —2k1e™* cos 3t — 3kye > sin 3t — 2kae ™ sin 3r + 3kpe > cos 31 + %e_m.

Then we evaluate at + = 0 and obtain the simultaneous equations

_ 1
Fi—1

0
—2ky + 3k + 3 =0.

Solving, we have k1 = 1/3 and k> = 0, so the solution of the initial-value problem is

2 cos3t — Lem

2t
3 .

V() = 3¢~
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12. This is the same equation as Exercise 6. The general solution 1s
¥(t) = ke 4 kpe™ + jre .
To find the solution with the initial conditions y(0) = v'(0) = 0, we compute
V(1) = —2k1e™% — Skpe ™" + %e_z" — %M—zr_
Then we evaluate at + = 0 and obtain the simultaneous equations
ki+k =0

~2ky — 5ky + £ =0.

Solving, we have k1 = —1/9 and k» = 1/9, so the solution of the initial-value problem is

y(r) = —%e_z“ + %E_St + %re_zf.

31. (a) The general solution for the homogeneous equation is
k1 cos2r + ko sin 2.
Suppose y,(7) = at®> + bt + c. Substituting v p(2) into the differential equation, we get
2.,

—7 4 =32 4+2r 43

2a + Mat> + bt +¢) = 31> + 2t +3

dar® + 4bt + (2a + 4¢) = =31 + 21 + 3.

Therefore, y,(7) is a solution if and only if

dg = -3
4b =2
2a +4c =3.

Therefore,a = —3/4,6 = 1/2, and ¢ = 9/8. The general solution is
v(t) =ki1cos2t + ka2 sin2r — %12 + %I + %.

(b) To solve the initial-value problem, we use the initial conditions ¥(0) = 2 and y’(0) = 0 along
with the general solution to form the simultaneous equations

ki+3=2
2k> + 3 =0.
Therefore, k&1 = 7/8 and k» = —1/4. The solution is
y(t) = %cos 2r — % sin 2t — %3‘2 + %e‘ + %.
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34. (a) To find a particular solution of the forced equation, we guess
vp(t) = at® + bt +c.
Substituting this guess into the equation yields
(2a) + 3(2ar + b) + 2(at®> + bt +¢) = 17,
which can be rewritten as
(2a)t” + (6a +2b)t + (2a + 3b 4 2¢) = 1.

Equating coefficients, we have
2a=1

6a+2b=0
2a 4+ 3b42c=0,
which givesa = 1/2,b = —3/2and ¢ = 7/4. So

, 1.2 3 7
vp(r) = 51— 51+ 3.

To find the general solution of the unforced equation, we note that the characteristic poly-
nomial

s 43542
has roots s = —2 and s = —1. so the general solution for the forced equation 1s
V(1) =kie ¥ v kpe ™ + 32 — 31+ 1.
(b) Note that
V() = —2kie ¥ — ket 41— 3.

To satisfy the desired initial conditions, we compute
y©0) =ky +ky + %

and
V(0) = —2ky —ky — %

Using the initial conditions ¥(0) = 0 and y'(0) = 0, we have &y = 1/4 and k» = —2. So the

desired solution 1s
(1) = ‘11—6?_2: — 2 4 %rz — %I + ET'
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(¢) The solution ﬁe_zt — 2e~" of the unforced equation tends to zero quickly, so the solution of the

original equation tends to infinity at a rate that is determined by the quadratic r>/2 — 37 /24 7/4.
This rate is essentially the same as that of r2.

[ =

1. The linearizations of systems (i) and (iii) are both

dx
dr
dv _
dr

=2x+y

so these two systems have the same “local picture™ near (0, 0). This system has eigenvalues 2 and
—1; hence, (0, 0) 1s a saddle for these systems. System (i1) has linearization

dx
d}'__
{fr _:‘.!

which has eigenvalues 2 and 1, hence, (0, 0) 1s a source for this system.
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4. (a) The equilibrium points occur where the vector field is zero, that is, at solutions of
—x=0
—4x3 +y =0.

So.x = y = 0 is the only equilibrium point.
(b) The Jacobian matrix of this system is

-1 0
—12x2 1 )’
-1 0
01/

dx
dr
dy
dr
(we could also see this by “dropping the higher order terms™).

which at (0, 0) is equal to

So the linearized system at (0, 0) is

(¢) The eigenvalues of the linearized system at the origin are —1 and 1, so the origin is a saddle.

The linearized system decouples, so solutions approach the origin along the x-axis and tend
away form the origin along the y-axis.
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(a) Using separation of variables (or simple guessing), we have x(7) = xpe ™.

(b) Using the result in part (a), we can rewrite the equation for dv/dr as

dy

ay 3t
dr

=y —4xge”

This first-order equation is a nonhomogeneous linear equation.
The general solution of its associated homogeneous equation is ke'. To find a particular
solution to the nonhomogeneous equation, we rewrite it as

A L 3 3t
= —yv=—dxge ',

and we guess a solution of the form y, = ae™>* . Substituting this guess into the left-hand side
of the equation yields

dy -
d_.,rp —vp = —4ae 3,

Therefore, y, 1s a solution if ¢ = .1'3. The general solution of the original equation is

v(t) = .1'315’_3£ +keé'.
To express this result in terms of the initial condition y(0) = yp, we evaluate at r = 0 and note
that X = yp — xg’ . We conclude that

¥(1) = xge ™ + (yo — xg)e’.

(¢) The general solution of the system 1s

x(r) = xge™*

¥(1) = xge > + (yo — x3)e’.

(d) For all solutions, x(r) — 0 as r — 00. For a solution to tend to the origin as 1 — 00, we must
have y(#) — 0, and this can happen only if v — xé’ =0.
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(e) Since x = xge™", we see that a solution will tend toward the origin as r — —oc only if xg = 0.

In that case, y(r) = yoe',and v(r) — Oasr — —o0.

()

(g) Solutions tend away from the origin along the y-axis in both systems. In the nonlinear system,
solutions approach the origin along the curve y = x> which is tangent to the x-axis. For the lin-
earized system, solutions tend to the origin along the x-axis. Near the origin, the phase portraits
are almost the same.
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9. (a) The equilibrium points are (0, 0), (0, 25), (100, 0) and (75, 12.5). We classify these equilib-

rium points by computing the Jacobian matrix, which is

100 — 2x — 2y —2x
—y 150 —x — 12y )’

and evaluating it at each of the equilibrium points. At (0, 0), the Jacobian matrix is

100 O
0 150 /)°

and the eigenvalues are 100 and 150. So this point is a source. At (0, 25), the Jacobian matrix

15
50 0
25 150 }°

and the eigenvalues are 50 and —150. Hence, this point is a saddle. At (100, 0), the Jacobian

matrix is
—100 =200
0 50 ’

and the eigenvalues are —100 and 50. Therefore, this point is a saddle. Finally, at (75, 12.5),

the Jacobian matrix 1s
-75 —150
—125 75 ’

and the eigenvalues are approximately —32 and —118. So this point is a sink.
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(b)
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14. (a) The equilibrium points are (0, 0), (1, 1) and (2, 0). We classify these points by calculating the

Jacobian matrix, which is,
2—-2x—y —X
—2xy 2y —x2 |’

and evaluating it at the points. At (0, 0), the Jacobian is

2 0

0 0)’
which has eigenvalues 2 and 0. An eigenvector for the eigenvalue 2 1is (1, 0), so solutions move
away from the origin parallel to the x-axis. On the line x = 0, we have dy/dt = y? so solutions

move upwards when v # 0. Hence, (0, 0) is a node. However, solutions near the origin in the
first quadrant move away from the origin as r increases. At (1, 1), the Jacobian is

(2 7))

which has eigenvalues +4/3. So (1, 1) is a saddle. At (2, 0), the Jacobian is

-2 -2
0 -4

which has eigenvalues —2 and —4. Thus, (2, 0) is a sink.

(b) . y y
1.01+
\_/ 0.02fr
0.008 >
0.004 > 00T
_T > : * —t x — x
0.004 0.008 1.01 2.01
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1. For x- and y-nullclines, dx /dr = 0, and dv/dt = 0 respectively. Then, we obtain v = —x 4 2
for the x-nullcline and v = x? for the y-nullcline. To find intersections, we set —x + 2 = x2, or
(x +2)(x — 1) = 0. Solving this for x yieldsx =1, —2. Forx =1,y = 1,and forx = -2,y = 4.
So the equilibrium points are (1, 1) and (-2, 4).

The solution for (a) is in the left-down region, and therefore, it eventually enters the region where
y < —x 4+ 2 and y < x2. Once the solution enters this region, it stays there because the vector field
on the boundaries never points out. Solutions for (b) and (c) start in this same region. Hence, all
three solutions will go down and to the right without bound.
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2. For x- and y-nullclines, dx /dt = 0, and dy/dt = 0 respectively. So, we have v = —x + 2 for the
x-nullchine and y = |x| for the y-nullcline. To find intersections, we set —x + 2 = |x|. Solving this
for x yields x = 1, so the only equilibrium point 1s (x, y) = (1, 1).

y
34

T : X
-3 \

The solution for (a) begins on the y-nullcline, heads into the right-up region, eventually crosses
the x-nullcline, and then tends to infinity in the left-up region.

The solution for (b) starts in the left-down position, crosses the x-nullcline, then tends to infinity
in the right-down region.

The solution corresponding to (c) starts on the y-nullcline, immediately enters the left-up region,
and then tends to infinity in this region.

7. (a) The x-nullcline consists of the two lines (b)
x =0and y = —x/2 4+ 50. The y-
nullcline consists of the two lines y =0
and y = —x/6 + 25.

509

|
150

(e) All solutions off the axes tend toward the sink at (75, 25/2). On the x-axis, solutions tend to
the saddle at (100, 0). On the y-axis, solutions tend to the saddle at (0, 25).
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12. (a)

(c)

The x-nullcline is given by the lines (b)
x =0and y = —x + 2. The y-nullcline
is given by the line y = 0 and the curve
2
y=x".

+ } — x

1 2 3
There 1s a saddle point at (1, 1). Two solutions leave this equilibrium point, one tending to
infinity, the other to the equilibrium point at (2, 0). Two solutions tend toward the saddle point,
one coming from the origin, one from infinity. To the “right” of and “below™ the incoming
solution curve, all solutions tend to the equilibrium point at (2, 0); to the “left” all solutions
tend to oc.
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1. (a) We compute that

daH
—_—=x—x
dx
and so
dy  0H
dt  ax
Also,
BH_ __d.r
ay _}_dr'

Hence, this is a Hamiltonian system with Hamiltonian function H.

(b) Note that (0, 0) 1s a local minimum and (e) The equilibrium point (0, 0) 1s a center
(£1, 0) are saddle pomnts. and (£1, 0) are saddles. The saddles

are connected by separatrix solutions.
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2. (a) If H(x, y) = sin(xy), then

F ycos(xy)
and so
dy  oH
dr — 9x
Similarly,
B'H__ (__)_d.l.‘
= = xcos(xy) = e

(b) Note that the level sets of H are the (¢) Note that there are many curves of equi-
same curves as those of the level sets of librium points for this system: besides
XYy, the origin, whenever xy = nmw + 7 /2,

the vector field vanishes.

¥y

DI
N7

9. We know that the equilibrium points of a Hamiltonian system cannot be sources or sinks. Phase
portrait (b) has a spiral source, so it is not Hamiltonian. Phase portrait (c) has a sink and a source,

so 1t 1s not Hamiltonian. Phase portraits (a) and (d) might come from Hamiltonian systems. (Try to
imagine a function which has the solution curves as level sets.)

x
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10. First note that

d(sinx cos y) 9(2x — cosx siny)
————————— =COSXCOSY = — .
dx ’ ay
Hence, the system 1s Hamiltonian. Integrating dx /dt with respect to y yields
H(x,y) =sinxsiny + c(x).
If we differentiate H (x, y) with respect to x, we get

cosx siny + ¢'(x),

which we want to be the negative of dv/dt = 2x — cosx siny. Hence ¢/(x) = —2x, and we pick the
antiderivative c¢(x) = —x2. A Hamiltonian function is
Hx,v)= —x? 4 sinx sin y.

11. First note that
=3y _ =)
ax T ey

Hence, the system 1s Hamiltonian. Integrating dx /dt with respect to y yields

H(x,y) =xy — ¥ +c).
If we differentiate H(x, y) with respect to x, we get
¥+ (),

which we want to be the negative of dy/dt = —y. Hence ¢/(x) = 0, and we pick the antiderivative
¢(x) = 0. A Hamiltonian function is

H(x,y)=xy —y.

12. First we check to see if the partial derivative with respect to x of the first component of the vector
field is the negative of the partial derivative with respect to y of the second component. We have

dl
— =0
ax

while
ay
ay

Since these are not equal, the system is not Hamiltonian.

- _1.
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