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1. As we computed in Exercise 1 of Section 3.2, the

eigenvalues are Ay = —2 and A» = 3. The eigen-
vectors (x1, v1) for the eigenvalue Ay = —2 satisfy
5x1 = —2y1, and the eigenvectors (x7, v2) for Ao = 3

satisfy the equation y» = 0. The equilibrium point at
the origin is a saddle.

2. As we computed in Exercise 2 of Section 3.2, the

eigenvalues are Ay = —2 and A = —5. The eigen-
vectors (x1, y1) for the eigenvalue A; = —2 satisfy
v; = —x1, and the eigenvectors (x, y») for A» = —5

satisfy x» = 2y». The equilibrium point at the origin
is a sink.

4. As we computed in Exercise 6 of Section 3.2, the

eigenvalues are Ay = —4 and A» = 9. The eigen-
vectors (x1, v1) for the eigenvalue A; = —4 satisfy
9x7; = —4y;, and the eigenvectors (x3, y2) for Ao = 9

satisfy the equation v» = x7. The equilibrium point at
the origin is a saddle.
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6. As we computed in Exercise 8 of Section 3.2, the
eigenvalues are

3+/5 3-43
and 31.2: .

2 2

-

]:

The eigenvectors (xy, vy ) for the eigenvalue A; satisfy
v = (1— NEES /2, and the eigenvectors (x2, y») for
the eigenvalue A satisfy v» = (1 + V3 /2. The
equilibrium point at the origin is a source.
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20. (a) The characteristic equation is
Q2-M(-2-1-12=22-16=0,

so the eigenvalues are Ay = —4 and A» = 4. Therefore, the equilibrium point at the origin is a
saddle.

(b) To find all the straight-line solutions, we must calculate the eigenvectors. For the eigenvalue
A1 = —4, we have the simultaneous equations

2x1 + 6y1 = —4x
2x1 — 2y =4y,

and we obtain y; = —x;. In other words, all vectors on the line y; = —x; are eigenvectors
for A;. Therefore, any solution of the form e ¥ (xy, —x;) for any x1 is a straight-line solution
corresponding to the eigenvalue A; = —4.
To calculate the eigenvectors associated to the eigenvalue A» = 4, we must solve the equa-
tions
2x2 + 6y2 =4xp

2xp — 2y =4y,
and we obtain xo = 3y;. Therefore, any solution of the form e¥(3y,, y2) for any y, is a

straight-line solution corresponding to the eigenvalue A, = 4.

() In the phase plane, the only solution curves that approach the origin are those whose initial
conditions lie on the line y = —x. All other solution curves eventually approach those that
correspond to the line x = 3y.
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The initial condition A = (1, —1) lies on the line
v = —x. Therefore, it corresponds to a straight-
line solution. In fact, the formula for its solution is

e H(1,-1).

The initial condition B = (3, 1) lies on the line x =
3y. Therefore, it corresponds to a straight-line solu-
tion, and the formula is e¥ (3, 1).

The solution curve that corresponds to the initial con-
dition C = (0, —1) enters the third quadrant and even-
tually approaches line x = 3y. From the phase plane,
we see that x(7) is decreasing for all + = 0. We
also see that y(r) increases initially, reaches a nega-
tive maximum value, and then decreases in an expo-
nential fashion. Since the solution curve crosses the
line y = x, we know that these two graphs cross. By
examining the line where dv/dt = 0, we see that these
two graphs cross at precisely the same time as y(7) at-
tains its maximum value.

The solution curve that corresponds to the initial con-
dition D = (—1, 2) moves from the second quadrant
mnto the first quadrant and eventually approaches the
line x = 3y. From the phase plane, we see that x(z)
is increasing for all + = 0. We also see that v(r)
decreases initially, reaches a positive minimum value,
and then increases in an exponential fashion. Since
this solution curve crosses the line vy = x, we know
that these two graphs cross. By examining the line for
which dy/dt = 0, we see that these two graphs cross
at precisely the same time as y(#) attains its minimum
value.
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21. (a) The second-order equation is
d*y  _dy
— 4+ T7—+6y=0.
dr? N ar %

Introducing v = dy/dt. we obtain the system

dy
_—1
dt
dv
— = —6y —Tv.
dt |
(b) The characteristic polynomial 1s
A2+ TA 46,
which factors into (A + 6)(A + 1).
(e) From the characteristic polynomial, we obtain the eigenvalues A; = —6 and 1> = —1.
(d) To compute the eigenvectors associated to A; = —6, we solve the simultaneous equations
v=—06y
—6y — Tv = —6v.
Therefore, any vector on the line v = —6y 1s an eigenvector associated to the eigenvalue 1;.
To compute the eigenvectors associated to A» = —1, we must solve the simultaneous equa-
tions
v=-—y
—6y — Tv = —v.
Therefore, any vector on the line y = —v 1s an eigenvector associated to the eigenvalue A5.
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Since both eigenvalues are real and negative, we know that origin is a sink, and the solu-
tion curve corresponding to the initial condition (v(0), v(0)) = (2, 0) tends toward the origin
tangent to the line y = —v in the yv-plane.

From the phase portrait, we see that the solution curve remains in the fourth quadrant for all
t > 0. Consequently, it does not cross the line ¥y = 0, and the mass cannot cross the equilibrium
position. The solution approaches the origin at the rate that 1s determined by the eigenvalue
A2 = —1. In other words, it approaches the origin at the rate of e .
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22. The differential equation is

d*y dy
az oY
which corresponds to the system
dy
_—1
dt
dv
—_—= Y — 4 .
dt Y Y
The characteristic polynomial is A2 + 44 + 1, and consequently the eigenvalues are A = —2 + +/3.
The eigenvectors for A = —2 + +/3 satisfy v = (—2 + +/3)v. and the eigenvectors for A =
—2 — /3 satisfy v = (—2 — 4/3)v. Looking at the phase plane, the line y = 2 crosses each line
of eigenvectors once. The line of eigenvectors corresponding to A = —2 — /3 is crossed at v =

—4 —24/3 while the line of eigenvectors corresponding to A = —2++/3 is crossed at v = —4+24/3.

The solutions with v = 2, v < —4 — 2./3 all cross into the left-half (v < 0 half) of the phase
plane. In other words, if the mitial velocity is sufficiently negative, then v overshoots y = 0. For
v > —4 — 24/3, y(¢) remains positive for all 7. Solutions tending toward the origin most quickly are
those on the line of eigenvectors corresponding to the more negative eigenvalue, so the solution that
reaches 0.1 quickest is the one whose initial velocity is v = —4 — 24/3.
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1. Using Euler’s formula, we can write the complex-valued solution Y.(7) as

Y, (1) = o130 ( 2+1 )
1

_ ot [ 21
1

2+i
:et{cos_%r—l—r'sin}r)( lr )

;[ 2cos3t —sin3r .+ [ 2sin3r 4 cos3t
=e +1e . .
cos 3¢ sin 3t
Hence, we have

2 cos 3r — sin 3¢ cos 3r 4+ 2 sin 3¢
Y.(t)=¢€ d Yiu(t)=¢ .
e(f) = ¢ ( cos 37 ) an im(7) = ( sin 3t )

The general solution is

2 cos 3r — sin 37 cos 3t 4+ 2 sin 3¢
Y(t) = ke’ + ket .
() e ( cos 3t ) 2¢ ( sin 3t )
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3. (a) The characteristic equation is
(=22 1d4=73214=0,

and the eigenvalues are A = +2i.
(b) Since the real part of the eigenvalues are 0, the origin is a center.
(e) Since A = +2i, the natural period is 27 /2 = m, and the natural frequency is 1/7.
(d) At (1, 0), the tangent vector is (—2, 0). Therefore, the direction of oscillation is clockwise.

(e) According to the phase plane, x(#) and v(r) are periodic with period 7. At the initial condition
(1, 0), both x(r) and y(¢) are initially decreasing.

AN\
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4. (a) The characteristic equation is
(2—A)(6—2)+8=21%—8x+20,

and the eigenvalues are A =4 £ 27.

(b) Since the real part of the eigenvalues is positive, the origin is a spiral source.

(e) Since A = 4 + 2i, the natural period is 271 /2 = 7, and the natural frequency is 1/7.

(d) At the point (1, 0), the tangent vector is (2, —4). Therefore, the solution curves spiral around
the origin in a clockwise fashion.

(e) Since dY/dt = (4,2) at Yo = (1, 1), both x(#) and y(¢) increase imtially. The distance be-
tween successive zeros is , and the amplitudes of both x(7) and y(7) are increasing.
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6. (a) The characteristic polynomial is
(—)(=1 =) +4=22+21+4,

so the eigenvalues are A = (—1 £ 17+/15)/2.
(b) The eigenvalues are complex and the real part is negative, so the origin is a spiral sink.
(¢) The natural period is 27 /(+/15/2) = 47 /+/15. The natural frequency is +/15/(47).

(d) The vector field at (1, 0) is (0, —2). Hence, solution curves spiral about the origin in a clock-
wise fashion.

(e) From the phase plane, we see that both x(¢) and y(r) are initially increasing. However, y(r)
quickly reaches a local maximum. Although both functions oscillate, each successive oscilla-
tion has a smaller amplitude.
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9. (a) According to Exercise 3, A = £2i. The eigenvectors (x, v) associated to eigenvalue A = 2i
must satisfy the equation 2y = 2ix, which is equivalent to y = ix. One such eigenvector is
(1, i), and thus we have the complex solution

Y() = 2t 1 _ C(.)S 2t 4 sin 2¢ -
i —sin 2¢ cos 2r

Taking real and imaginary parts, we obtain the general solution

2 in 27
YO =k | 7 Vil 7).
—sin 2¢ cos 2r

(b) From the initial condition, we obtain

o(2)(2)-(2)

and therefore, Xy = 1 and k» = 0. Consequently.the solution with the initial condition (1, 0) 1s

cos 2f
Y = )
© ( —sin2r )

(e) X,y
x(t)  y(t)

NOYR,
ANVANVA
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10. (a) According to Exercise 4, the eigenvalues are A = 4 4 2i. The eigenvectors (x, y) associated
to the eigenvalue 4 + 27 must satisfy the equation v = (1 + i)x. Hence, using the eigenvector
(1,1 +17), we obtain the complex-valued solution

: 1 cos 2t sin 27
Y(IJ — e(4—|—2l}f . — e‘” . + !,'641 . )
141 cos 2t —sin2¢ cos 2t + sin 2¢

From the real and imaginary parts of Y(7), we obtain the general solution

Y() = klf"" cos 2.?. +R’2e4r sin 2.?. _
cos 2t — sin 2t cos 2f 4 sin 27

(b) Using the initial condition, we have

(1))

and thus k; = 1 and k> = 0. The desired solution is

7
Y() = S cos 2t
cos 2t — sin 2t

() Xy

101

x(t)
: *_f_.\ I t

1
_10d y(@)

20. If AYp = 1Y, then we can take complex conjugates of both sides to obtain AY, = 1Yo (where the
complex conjugate of a vector or matrix is the complex conjugate of its entries). But AYq = AYp =
AY, because A is real. Also, AYo = A Yo. Hence, AYy = AYp. In other words, A is an eigenvalue
of A with eigenvector Yp.
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1. (a) The characteristic equation is
(=3-1)7=0,

and the eigenvalue is A = —3.
(b) To find an eigenvector, we solve the simultaneous equations
—3x=-3x
x —3y=-3y.

Then, x = 0, and one eigenvector 1s (0, 1).
(¢) Note the straight-line solutions along the y-axis.

_3T

(d) Since the eigenvalue is negative, any solution with an initial condition on the y-axis tends to-
ward the origin as r increases. According to the direction field, every solution tends to the
origin as f increases. The solutions with initial conditions in the half-plane x > 0 eventually
approach the origin along the positive y-axis. Similarly, the solutions with initial conditions in
the half-plane x < 0 eventually approach the origin along the negative v-axis.

Page 14




HW7-Sols.pdf

(e) At the point Yo = (1,0), dY/dr = (=3, 1). Therefore, x(¢) decreases initially and v(r) in-
creases initially. The solution eventually approaches the origin tangent to the positive y-axis.
Therefore, x(7) monotonically decreases to zero and y(r) eventually decreases toward zero.
Since the solution with the initial condition Y never crosses y-axis in the phase plane, the
function x(t) > 0 for all 7.

x(t)

y(z)
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2. (a) The characteristic polynomial is

Q-MNE - +1=22—-611+9=(—3)3%

so there 1s only one eigenvalue, A = 3.
(b) To find an eigenvector, we solve the equations

2x4+y=3x

—x + 4y =3y.

Both equations simplify to vy = x, so (1, 1) is one eigenvector.

(¢) Note the straight-line solutions along the line y = x.

(d) Since the sole eigenvalue is positive, all solutions except the equilibrium solution are unbounded
as r increases. Ast — —o0, the solutions with initial conditions in the half-plane v > x tend to
the origin tangent to the half-line vy = x with y < 0. Similarly, solutions with initial conditions
in the half-plane y < x tend to the origin tangent to the half-line v = x with ¥ > 0. Note the
solution curve that goes through the initial condition (1, 0).

Page 16




HW7-Sols.pdf

(e) At the point Yo = (1,0), dY/dr = (2, —1). Hence, x(t) is initially increasing, and v(7) is
initially decreasing.

x,y
3 (1)
i t
1 1’\
_5
y(t)
~10

Page 17




HW7-Sols.pdf

5. (a) According to Exercise 1, there is one eigenvalue, —3, with eigenvectors of the form (0, vg),

where vo # 0.
To find the general solution, we start with an arbitrary initial condition Vo = (xg, vg). Then

(7))
(7o) ()
:(;)_

‘We obtain the general solution

Y 0
Y(r)=e ! ( o ) 4 te ! ( ) .
Yo X0

(b) The solution that satisfies the initial condition (xg, o) = (1, 0) 1s

Y(rJ:e‘St([l) )—I—re_h( [1})

Hence, x(1) = e and y(¢) = te .

(¢) Compare the graphs of x (1) = e and v(t) = te—>' with the sketches obtained in part (e) of
Exercise 1.

x, ¥

)

x(t)

y(1)

|l
I3 =
-
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6. (a) From Exercise 2, we know that there is only one eigenvalue, A = 3, and the eigenvectors
(x0, vo) satisfy the equation yg = xp.
To find the general solution, we start with an arbitrary initial condition Vo = (xp, vo). Then

ERRES

‘We obtain the general solution

X Vg — X
Y1) = e 0 +ret | 0 0 .
Yo Yo — Ao

(b) The solution that satisfies the initial condition (xg, vo) = (1, 0) is

1 1
Y(@) = ( 0 )+Ie3f( B )

Hence, x() = ¢>'(1 — t) and v(r) = et

(¢) Compare the graphs of x (1) = e (1—1) and v(t) = —re3 with the sketches obtained in part (e)
of Exercise 2.

y(t)
—10
12. The characteristic polynomial of A 1s
det(A — AI) = A% — (a + d)A + (ad — be) = A% — tr(A)A + det(A)

(see Section 3.2). A quadratic polynomial has only one root if and only if its discriminant is 0. In
this case, the discriminant of det(A — AI) is tr(A)? — 4 det(A).
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18. (a) The characteristic equation is
2—A)6-—21)—12=22—-81=0.

Therefore, the eigenvalues are L. = 0 and A = 8.

(b) To find the eigenvectors V; associated to the eigenvalue A = 0, we must solve AV; =0V; =0
where A is the matrix that defines this linear system. (Note that this is the same calculation we
do if we want to locate the equilibrium points.) We get

2x1+4y, =0
3x1 +6y1 =0,

where V; = (x1, ¥1). Hence, the eigenvectors associated to A = 0 (as well as the equilibrium
points) must satisfy the equation x; + 2y; = 0.

To find the eigenvectors V; associated to the eigenvalue . = 8, we must solve AV, = 8V>.
We get

2x3 + 4y, = 8xp
3xz + 0y2 = 8ya,
where Vo = (x2, ¥2). Hence, the eigenvectors associated to A = 8 must satisfy 2y» = 3x».
(¢) The equation x; + 2y; = 0 specifies a line of equilibrium points. Since the other eigenvalue

is positive, solution curves not corresponding to equilibria move away from this line as ¢ in-
creases.

Page 20




HW7-Sols.pdf

(d) Ast increases, both x(#) and y(r) increase exponentially. As ¢ decreases, both x and y approach
constants that are determined by the line of equilibrium points.

x,¥
10+
y(t) —
sl AN
x(t)
} — ¢
—0.5 | 0.5

(e) To form the general solution, we must pick one eigenvector for each eigenvalue. Using part (b),
we pick V; = (-2, 1), and V, = (2, 3). We obtain the general solution

-2 2
Y(r):h( | )+A—233’( ; )

(f) To determine the solution whose initial condition is (1, 0), we let 1 = 0 in the general solution

and obtain the equations
r -2 P 2 1
+k& = :
o “\ 3 0

Therefore, &y = —3/8 and k» = 1/8. The particular solution is

8
Y(r) = ( ) )
_ o8

20. (a) The characteristic equation is A2 — (a + d)A + ad — be = 0. If 0 is an eigenvalue of A, then
0 1s a root of the characteristic polynomial. Thus, the constant term in the above equation must
be 0—that is, ad — bc = det A = 0.
(b) If det A = 0, then the characteristic equation becomes 22— (a+d)) =0, and this equation has
0 as a root. Therefore 0 is an eigenvalue of A.
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21. (a) The characteristic polynomial is A2 = 0, so A = 0 is the sole eigenvalue. To sketch the phase
portrait we note that dv/dt = 0, so y(t) 1s always a constant function. Moreover, dx /dr = 2y,
so x(t) is increasing if ¥ > 0, and it 1s decreasing if vy < 0.

(b) This system is exactly the same as the one in part (a) except that the sign of dx /dr has changed.
Hence, the phase portrait is the identical except for the fact that the arrows point the other way.
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r
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