ey= (") “X_ 0 3y
v dt —03 3=
3 —2 7
7.Y = . dY— 2 0 6 1Y
T 71 dr B
r 0 73 2
8. dx
d—j=—3x—|—23r_v
dv
_':4"_.'
dr ¥ )

14. (a) If a =0, then det A = ad — be = be. Thus both b and ¢ are nonzero if det A # 0.
(b) Equilibrium points (xg, o) are solutions of the simultaneous system of linear equations

axg+byo =0
cxg +dyg =0.

If a = 0, the first equation reduces to byg = 0, and since & # 0, yo = 0. In this case, the

second equation reduces to cxg = 0, so xp = 0 as well. Therefore, (xg, yo) = (0, 0) is the only
equilibrium point for the system.
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24. (a) Substituting Y (r) in the left-hand side of the differential equation yields

dY1 _ 0
dr o el ’
Moreover, the right-hand side becomes

()
(%)

Since the two sides of the differential equation agree, Y;(z) is a solution.
Similarly, if we substitute Y, (#) in the left-hand side of the differential equation, we get

dY, [ 2¢*
dr— \ 2 |’

Moreover, the right-hand side 1s

Since the two sides of the differential equation also agree for this function, Y2(r) is another
solution.

(b) Atr = 0,Y(0) = (—2, —1). By the Linearity Principle, any linear combination of two solu-
tions is also a solution. Hence, we solve the given initial-value problem with a function of the

form k1 Y1 (1) + & Y2(r) where k7 and &> are constants determined by the initial value. That is,
we determine &7 and &> via

)
k1Y1(0) +5Y200) = Y(0) = ( B ) .

+(3) ()

We get

Il
S
[
— D
—
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This vector equation is equivalent to the simultaneous linear equations

ky =-2
kh+hk=-1.
From the first equation, we have A2 = —2. Then from the second equation, we obtain k1 = 1.

Therefore, the solution to the initial-value problem is

Y1) =Y1(r) — 2Ya(7)

_2€2.t
- el — 2% |

Note that (as always) we can check our calculations directly. By direct evaluation, we know
that Y(0) = (—2, —1). Moreover, we can check that Y () satisfies the differential equation. The
left-hand side of the differential equation is

dY [ —4e*
dt — \ e —4e2 )’

and the right-hand side of the differential equation is

2 0 Yo = 2 0 —2¢%
1 1 BRI el — 42
_4€21
“\ o — 402 |

Since the left-hand side and the right-hand side agree, the function Y(r) is a solution to the
differential equation, and since it assumes the given initial value, this function is the desired
solution to the initial-value problem. The Uniqueness Theorem says that this function is the
only solution to the initial-value problem.
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26. (a) Substitute Y;(r) into the differential equation and compare the left-hand side to the right-hand
side. On the left-hand side, we have

dy; [ -3¢
dt — \ =373 |’
and on the right-hand side, we have

-2 1 —3t -2 -3t _ ,—3t _3 —3t
AY (1) = UL ) =00 )= L)
2 -5 e3¢ 2e~3t _ 573 —3e— 3

Since the two sides agree, we know that Y;(7) 1s a solution.

For Y»(r),
dY- _ —4e—H
dr _ge—4t !

-2 1 —4¢ _De—H _np—H _Ae—H
AY>(r) = S ) =00 )= )
2 -5 2e—H 2e=% _ 10e—# —8e=¥

Since the two sides agree, the function Y»(7) 1s also a solution.
Both Y;(r) and Y»(r) are solutions, and we proceed to the next part of the exercise.

(b) Note that Y;(0) = (1, 1) and Y2(0) = (1, 2). These vectors are not on the same line through
the origin, so the initial conditions are linearly independent. If the initial conditions are linearly
independent, then the solutions must also be linearly independent. Since the two solutions are
linearly independent, we proceed to part (c) of the exercise.

(e) We must find constants &y and 4> such that

1 1 2
kF1Y1(0) +5Y2(0) =k k = .
1Y1(0) +4A2Y2(0) 1(1)+2(2) (3)

In other words, the constants A1 and X» must satisfy the simultaneous system of linear equations

and

kKi+hk=2
k1 + 2k =3.

It follows that &; = 1 and k» = 1. Hence, the required solution is

3t |, 4t
nm+hm=(€ +e )

€—3i‘ + 28—41‘
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34. (a)fY(r) = (t,1%/2), then x(¢r) = t and y(¢r) = t?/2. Thendx/dt = 1,and dy/dt =t = x. So
Y (r) satisfies the differential equation.
(b) For 2Y(r), we have x(r) = 2t, and v(t) = t2. In this case, we need only consider dx /dt = 2 to
see that the function is not a solution to the system.

35. (a) Using the Product Rule we compute

dw . d.T] X d_‘v‘g d.’t‘g X i d}‘l
ar a2 T T
(b) Since (x1(1), y1(¢)) and (x2(r), v2(r)) are solutions, we know that
d .
% = axy + bn
dv
% = cx1 +dn
and that
d -
% =axz + by»
d P
% =cxy +dyr.

Substituting these equations into the expression for d W/dt, we obtain
dw
— = (ax1 +by)y2 + x1(exz + dyz) — (axy + by2)y1 — xa(exy + dyy).

After we collect terms, we have

daWw
—=(a+d)W.
dt

(¢) This equation is a homogeneous, linear, first-order equation (as such it is also separable —see
Sections 1.1, 1.2, and 1.8). Therefore, we know that the general solution is

W(r) = Celatd?

where C is any constant (but note that C = W(0)).

(d) From Exercises 31 and 32, we know that Y;(7) and Y,(r) are linearly independent if and only
if W(r) # 0. But, W(t) = Ce @9 50 W(r) = 0 if and only if C = W(0) = 0. Hence,
W () = 0 is zero for some ¢ if and only if C = W(0) = 0.
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1. (a) The characteristic polynomial is
(3—-2(-2-2) =0,

and therefore the eigenvalues are Ay = —2 and A, = 3.
(b) To obtain the eigenvectors (x, v1) for the eigenvalue A; = —2, we solve the system of equa-
tions

x4+ 2vi=-2x;
—2y1=-2n
and obtamn 5x; = —2y;.

Using the same procedure, we see that the eigenvectors (x2, v2) for A» = 3 must satisfy the
equation y, = 0.

(e) y
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(d) One eigenvector V; for A is Vi = (=2, 5), and one eigenvector V, for A» is V2 = (1, 0).
Given the eigenvalues and these eigenvectors, we have the two linearly independent solu-

tions
—2t -2 3t 1
Yi(t)=e¢ _ and Yo(r) =€ .
5 0
x ¥
oY 10T
10—+
x(z)
S y® s+
= ¢
,_.—-—-""’;'a—_ 1 A ¥(t)
| . i 13
-5T —1 1
The x(f)- and y(¢)-graphs for Y1(f). The x(r)- and y(¢)-graphs for Ya(r).

(e) The general solution to this linear system is

-2 1
Y(:}:k,e—ﬁf( i )+;c2e3f( )
5 0
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2. (a) The characteristic polynomial is

(=4 —(=3-2)—-2=224+T2+10=0,

and therefore the eigenvalues are Ay = —2 and A» = —5.
(b) To obtain the eigenvectors (x1, v;) for the eigenvalue A; = —2, we solve the system of equa-
tions
—4.1'1 — 2}‘1 = —21‘1
—x1—3n=-2n
and obtain y; = —x3.
Using the same procedure, we obtain the eigenvectors (x7, y2) where xo = 2y, for Ay =
—5.
(e) y
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(d) One eigenvector V; for A1 is V; = (1, —1), and one eigenvector V5 for > is Vo = (2, 1).
Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

Yl(r}:e_zf( i) and Yg(sJ:e—S‘( ? )

The x(¢)- and y(¢)-graphs for Y1 (). The x(t)- and y(t)-graphs for Yo (t).

(e) The general solution to this linear system is

1 2
Y(1) :kle_zt( . )+k2e—5f( : )
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6. (a) The characteristic polynomial is

(5 —A)(—A) —36 =0,

and therefore the eigenvalues are Ay = —4 and A, = 9.
(b) To obtain the eigenvectors (x1, v;) for the eigenvalue A; = —4, we solve the system of equa-
tions

S5x1 4+ 4y = —4x;
9x; = —4n

and obtain 9x; = —4v;.
Using the same procedure, we see that the eigenvectors (12, v2) for Ao = 9 must satisfy the
equation y» = x».
(e) y
3 1
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(d) One eigenvector V; for A1 is V; = (4, —9), and one eigenvector V5 for > is Vo = (1, 1).
Given the eigenvalues and these eigenvectors, we have the two linearly independent solu-

tions
4 1
Yi(t) =¥ and Ya(t) = e .
-9 1
X ¥
B 10+
15
10
x(t) f
: =% /x@).3(0)
—0.5 _5 0.5 ) /
—10 ¥(t)
T PR —
715 —0.5 0.5
The x(t)- and y(t)-graphs for Y1(z). The (identical) x(#)- and y(#)-graphs for Yo (¢).

(e) The general solution to this linear system is

4 1
Y(r):kle_4‘( L )+k2e9f( . )
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7. (a) The characteristic polynomial is
B (=A)—4=22_31—-4=(A—-4H(A+1) =0,

and therefore the eigenvalues are .1 = —1 and A2 = 4.
(b) To obtain the eigenvectors (x1, v1) for the eigenvalue Ay = —1, we solve the system of equa-
tions

3x; + 4y = —xy
X1=—)1

and obtain y; = —xj.
Using the same procedure, we obtain the eigenvectors (x2, y2) where xo = 4y, for A, = 4.

4;

(e)

(d) One eigenvector V; for A; is V1 = (1, —1), and one eigenvector V; for A, 1s Vo = (4, 1).
Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

YI(:)=e—’( i) and Yg(:)ze‘"(‘:).

X,y
xo Y 10T

2__
x(t)
-1 2
y(t) y(t)
| 1

T T T |3
—27T 0.5 0.5

The x(¢)- and y(¢)-graphs for Y1(r). The x(#)- and y(¢)-graphs for Yo (r).

(e) The general solution to this linear system is

Y(1) :kle_f( _i )—I—kge‘“ ( i- )
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14. The characteristic polynomial is
d—1—-04+2=22-51L1+6=0,

and therefore the eigenvalues are Ay = 3 and A, = 2.
To obtain the eigenvectors (x1, v1) for the eigenvalue A; = 3, we solve the system of equations

4.1'1 — 2}-‘1 = 3):1
x1+y1=3n

and obtain
Xl = 2}-‘1.

Therefore, an eigenvector for the eigenvalue A; = 315 V; = (2, 1).
Using the same procedure, we obtain the eigenvector Vo, = (1, 1) for A, = 2.
Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

Yl(rJ:e3’( i ) and Yz(.r)zez’( i )

The general solution to this linear system is

Y(t) = kye ( ? )+k2e2‘( i )

(a) We have Y(0) = (1, 0), so we must find 4y and k> so that

()-men()(1)

This vector equation 1s equivalent to the simultaneous system of linear equations
2k + k=1
ki+k =0.

Solving these equations, we obtain &1 = 1 and A = —1. Thus, the particular solution is

Y1) = e 2 — e ! .
1 1
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(b) We have Y(0) = (2, 1). Since this initial condition is an eigenvector associated to the A = 3
eigenvalue, we do not need to do any additional calculation. The desired solution to the initial-

value problem is
2
Y(:}:e?‘f( I )

(e) We have Y(0) = (—1, —2). so we must find &y and %> so that

(4)-mes () (1)

This vector equation 1s equivalent to the simultaneous system of linear equations
2oy +hkh=-1
ki +hkp=-2.

Solving these equations, we obtain &1 = 1 and & = —3. Thus, the particular solution 1s

2 1
Y — 3t -3 _2f )
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20. (a) The parameters m = 1,k =4, and & = 5 yield the second-order equation

d*y dy
— 45— 44y =0.
dr? + dr e

Given v = dv/dt, the corresponding system is

dy

—_ =1

dt

dv

— = —4y — Sv.

dt |
The characteristic polynomial is A% 4+ 54 + 4, and the eigenvalues are A; = —4 and A, = —1.

To find the eigenvectors Vi = (v, v1) associated to the eigenvalue Ay = —4, we solve the
system of equations.
= —4}-‘]

—4_‘.-‘] — 5U1 = —4U1

and obtain vy = —4y;. Thus, one eigenvector for A; = —41s V; = (1, —4).
By the same procedure, we can find the eigenvector Vo = (1, —1) for the eigenvalue 4> =
—1.

(b) Therefore the solution Y1 (z) that satisfies Y;(0) = V; 1s

1
Y1) =e ¥ )
1(r)=e ( _4)

The solution Y2(r) that satisfies Y2(0) = Vo is

Yo(r)=e?! ( i ) .

'('E) v
4__
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(d) ¥, v ¥, v
54 5+

y(1) y(t)

| "“"--—.'_{_ ; " f h-h_{"_—— ¢
0.5 0.5 2 ~ 2
AN v(e)
_5_|_ v(t) _s54
The y(t)- and v(t)-graphs for Y1(7). The y(t)- and v(t)-graphs for Y2(#).

(e) The first mitial condition (yg, vg) = (1, —4) represents a solution whose initial position is 1
unit away from the equilibrium position and whose initial velocity is —4. Note that the solution
tends toward the equilibrium point at the origin. Moreover, v(#) is decreasing toward 0, and
v(t) 1s increasing toward 0. Therefore, the mass moves toward the equilibrium position mono-
tonically, and its speed decreases as it approaches the equilibrium position. The mass does not
oscillate about the equilibrium position.

The second initial condition (yp, vo) = (1, —1) represents a solution whose initial position
is 1 unit away from the equilibrium position and whose initial velocity is —1. The behavior of
this solution is similar to the first solution.
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