HW5

1. In the case where it takes many predators to eat one prey, the constant in the negative effect term
of predators on the prey i1s small. Therefore, (i1) corresponds the system of large prey and small
predators. On the other hand, one predator eats many prey for the system of large predators and
small prey, and, therefore, the coefficient of negative effect term on predator-prey interaction on the
prey is large. Hence, (i) corresponds to the system of small prey and large predators.

2. For (1), the equilibrium points are x = y = 0 and x = 10,y = 0. For the latter equilibrium
point prey alone exist; there are no predators For (1), the equilibrium points are (0, 0), (0, 15). and

(3/5, 30). For the latter equilibrium point, both species coexist. For (0, 15), the prey are extinct but
the predators survive.

4. For (1), the prey obey a logistic model. The population tends to the equilibrium point at x = 10. For
(11), the prey obey an exponential growth model, so the population grows unchecked.
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Phase line and graph for (i). Phase line and graph for (ii).

6. For (1), the predators obey an exponential decay model, so the population tends to 0. For (i1), the
predators obey a logistic model. The population tends to the equilibrium point at y = 15.
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Phase line and graph for (i). Phase line and graph for (ii).
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(b) Each of the solutions tends to the equilibrium point at (R, F) = (5/4, 2/3). The populations
of both species tend to a limit and the species coexist. For curve B, note that the F-population
initially decreases while R increases. Eventually F bottoms out and begins to rise. Then R
peaks and begins to fall. Then both populations tend to the limit.
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20. (a) If we substitute v(¢) = cos gt into the left-hand side of the equation, we obtain

d’y k d? k
dr2  m dr?

—cos fit
m

__g K
= —f" cos fr + — cos it
m

= (i — ﬂz) cos fBr
m

Hence, in order for y(r) = cos it to be a solution we must have k/m — g2 = 0. Thus,

k
B=.—.

m

(b) Substituting 7 = 0 into y(r) = cosfr and v(r) = y'(r) = —psinfr we obtain the initial
conditions y(0) = 1, v(0) = 0.

(e) The solution is y(7) = cos((,/k/m)r) and the period of this function is 2w /(,/k/m), which

simplifies to 2 /m //k.
(d) v
> y
8. (a) Letv =dy/dt. Then (b) See part (c).
duv B d?y _ 9y
ar diz

Thus the associated wvector field is
V(y,v) = (v, —2y).
(0) , (d) ,

(e) Asr increases, solutions move around the origin on ovals in the clockwise direction.
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10. (a) (b) The solution enters the first quadrant
and tends to the origin tangent to the
positive x-axis. Therefore x () mitially
increases, reaches a maximum value,
and then tends to zero as r — 00. It re-
mains positive for all positive values of

x t. The function y(r) decreases toward
zero as [ — 00.

[

N

11. (a) There are equilibrium points at (41, 0), so only systems (i1) and (vi1) are possible. Since the
direction field points toward the x-axis if y # 0, the equation dy/dtr = y does not match this

field. Therefore, system (vii) is the system that generated this direction field.

(b) The origin is the only equilibrium point, so the possible systems are (ii1), (iv), (v), and (vii1).
The direction field is not tangent to the y-axis, so it does not match either system (1v) or (v).
Vectors point toward the origin on the line y = x,so dy/dt = dx/dt if y = x. This condition
is not satisfied by system (i11). Consequently, this direction field corresponds to system (viii).

(¢) The origin is the only equilibrium point, so the possible systems are (iii), (iv), (v), and (viii).
Vectors point directly away from the origin on the y-axis, so this direction field does not cor-
respond to systems (111) and (vii1). Along the line y = x, the vectors are more vertical than

horizontal. Therefore, this direction field corresponds to system (v) rather than system (iv).
(d) The only equilibrium point is (1, 0), so the direction field must correspond to system (vi).
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14. (a) To find the equilibrium points, we solve the system of equations
4R —-TF -1=0
JR+6F —-12=0.

These simultaneous equations have one solution, (R, F) = (2, 1).
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(b) As 1 increases, typical solutions spiral away from the equilibrium point at (2, 1)
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18. (a) To find the equilibrium points, we solve the system of equations
ya2+y*—1)=0
—x(x2+ _v2 -1 =0.

If x2 4+ y? = 1, then both equations are satisfied. Hence, any point on the unit circle centered
at the origin is an equilibrium point. If x> 4 y? % 1, then the first equations implies y = 0 and
the second equation implies x = 0. Hence, the origin is the only other equilibrium point.

(b) ¥ ¥

(e) As r increases, typical solutions move on a circle around the origin, either counter-clockwise
inside the unit circle, which consists entirely of equilibrium points, or clockwise outside the
unit circle.
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19. (a) Letv = dx/dt. Then

dv d*x , 3
E:ﬁ:&l_l —EU.
Thus the associated vector field
is V(x, v) = (v, 3x — x3 — 2v).
(e)

v

(b) Setting V(x,v) = (0,0) and solv-
ing for (x,v), we get v = 0 and
3x — x> = 0. Hence, the equilib-
ria are (x, v) = (0,0) and (x,v) =

(++/3,0).

(d)

(e) As 7 increases, almost all solutions spiral to one of the two equilibria (+/3,0). There is a
curve of initial conditions that divides these two phenomena. It consists of those initial condi-
tions for which the corresponding solutions tend to the equilibrium point at (0, 0).
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21. (a) The x(7)- and v(r)-graphs are periodic, so

they correspond to a solution curve that re-
turns to its initial condition in the phase
plane. In other words, its solution curve
is a closed curve. Since the amplitude of
the oscillation of x(r) is relatively large,
these graphs must correspond to the outer-
most closed solution curve.

(b) The graphs are not periodic, so they cannot

correspond to the two closed solution curves
in the phase portrait. Both graphs cross the 7-
axis. The value of x(r) is initially negative,
then becomes positive and reaches a max-
imum, and finally becomes negative again.
Therefore, the corresponding solution curve
is the one that starts in the second quadrant,
then travels through the first and fourth quad-
rants, and finally enters the third quadrant.

(¢) The graphs are not periodic, so they cannot

correspond to the two closed solution curves
in the phase portrait. Only one graph crosses
the r-axis. The other graph remains negative
for all time. Note that the two graphs cross.

The corresponding solution curve is the
one that starts in the second quadrant and
crosses the x-axis and the line y = x as it
moves through the third quadrant.

(d) The x(z)- and y(z)-graphs are periodic, so

they correspond to a solution curve that re-
turns to its initial condition in the phase
plane. In other words, its solution curve
is a closed curve. Since the amplitude of
the oscillation of x(r) is relatively small,
these graphs must correspond to the inter-
most closed solution curve.
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23. Since the solution curve spirals into the origin, the corresponding x (#)- and y(r)-graphs must oscillate
about the 7-axis with the decreasing amplitudes.
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24. Since the solution curve is an ellipse that 1s centered at (2, 1), the x(r)- and y(r)-graphs are periodic.
They oscillate about the linesx =2 and y = 1.
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2. (a) See part (c).
(b) We guess that there are solutions of the form y(r) = ¢*' for some choice of the constant 5. To
determine these values of s, we substitute v(z) = ¢*' into the left-hand side of the differential
equation, obtaining

d>y dvy _ d2(e’h) d(e")

+5— + 6y +5 + 6(e™)

drz " Tdr T T a2 dt

— 5265 4 55’ 4 6
= (52 1 55 4+ 6)e™

In order for y(7) = e to be a solution, this expression must be O for all 7. In other words,

52+ 55 4+6=0.
This equation is satisfied only if s = —3 or s = —2. We obtain two solutions, y; () = ¢’ and
va(t) = e~ of this equation.
(c) v
3-1—
y1.U1 Y2, 2
e —+- v 1 y1(0) 1 y2(t)
T3 3 T\—q— +\ = ;
F 1
(r)
a4 . v (1) \ 2
—2-F 3
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3. (a) See part (c).

(b) We guess that there are solutions of the form y(7) = e for some choice of the constant 5. To
determine these values of s, we substitute v(r) = e*' into the left-hand side of the differential
equation, obtaining

d*y  dy d*(es)  d(e)
—_— —_— i — 4 lsi‘
az A YT g g e

— 326’“ +4\g€sr + esr

= (s +4s + 1)e*!
In order for y(7) = ¢ to be a solution, this expression must be 0 for all 7. In other words,
s24+45+1=0.

Applying the quadratic formula, we obtain the roots s = —2 %+ /3 and the two solutions,
yi(r) = (231 3pd va(t) = e(_H“@“, of this equation.
(e)
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5. (a) See part (c).

(b) We guess that there are solutions of the form y(7) = e for some choice of the constant 5. To

determine these values of s, we substitute v(r) = e*' into the left-hand side of the differential
equation, obtaining

d’y dy d*(e*") . d(e)
— +3——10y = 3
N Y=E T

_1[:' St
arz o di (™)

= s2e" 4 3se’! — 10e*
= (5% 4+ 35 — 10)e™
In order for y(7) = € to be a solution, this expression must be 0 for all 7. In other words,

s2 435 —10=0.

This equation is satisfied only if s = —5 or 5 = 2. We obtain two solutions, y;(t) = ¢ and
v2(t) = e, of this equation.
(e) v
oL /
¥1, V1
6 Y2, 02
1 v v v v rT T T t
3 3 7 ﬁt vy (1) 14220 =
.1 0.5
() va (1)
s ' t
> 0.5 =S5

3. To check that dx /di = 2x + 2y, we compute both

dx
— =2¢ —4eM
dt
and
2x + 2y =4e’ — 26 — 26" 4 2% = 2¢7.
Since the results of these two calculations do not agree, the first equation in the system is not satisfied,
and (x(z), y(¢)) 1s not a solution.
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4. To check that dx /dr = 2x + 2y, we compute both

% = 4e' + 4%

and
x4+ 2y = 8! L 2eM _ 4ot 1 2eM = 46" 1 46",
To check that dy /dt = x + 3y, we compute both
dy

d—'{ = 2¢ 1 4e¥,

and
x4+ 3y =4 +e* —6e" + 36 = —2¢" + 4e¥.

Both equations are satisfied for all 7. Hence (x(r), ¥(#)) is a solution.
4. (a) Euler approximation yields (xg, vg) ~ (3.00,0.76).
(b) (e)
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5. (a) Euler approximation yields (x5, vs5) ~ (1.94, —0.72).
(b) (e)

24

-2

2. (a) There are infinitely many initial conditions that yield a periodic solution. For example, the
mnitial condition (2.00, 0.00) lies on a periodic solution.

—34

(b) Any solution with an initial condiion that is inside the periodic curve is trapped for all time.
Namely, the period solution forms a “fence” that stops any solution with an imtial condition
that 1s inside the closed curve from “escaping.” Since the system is autonomous, no nonperiodic
solution can touch the solution curve for this period solution.
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8. (a) Differentiation yields

dYs . d(Yq1(t 4+ 1p))

= P =F(Y1(t + 1)) =F(Y2(1)

where the second equality uses the Chain Rule and the other two equalities involve the defini-
tion of Y»(1).
(b) They describe the same curve, but differ by a constant shift in parameterization.
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