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31. The function f(v) has three zeros. We denote them as y;, y2, and vy,
where v;1 < 0 < ¥» < y3. So the differential equation dy/dt = f(v)
has three equilibrium solutions, one for each zero. Also, f(v) = 0if
y <y, f(y) <0ify <y <yrand f(y) >0 y2 <y < y3orif
v > v3. Hence y; is a sink, y; is a source, and y3 is a node.

32. The function f(y) has four zeros, which we denote vi, ..., y4 where
vi <0 < y2» < y3 < y4. So the differential equation dy/dr = f(y) has
four equilibrium solutions, one for each zero. Also, f(y) > 0if y < vy,
if vy <y <wyyorifys < v <yg;and f(v) <0if vy < v < yporif
v > v4. Hence v; is a sink, v is a source, v3 is a node, and vy is a sink.

34. Since there are four equilibrium points, the graph of f(y) must touch the y-axis at four distinct num-
bers v1, ¥2, ¥3, and v4. We assume that vj < y2 < y3 < v4. Since the arrows point up only if
vi <y < worifvoa <y < v3, wemust have f(v) > 0Ofory; < y < yp and for v» < v < 3.
Moreover, f(v) < 0if y < y1,if v3 < v < y4,0orif ¥ > y4. Therefore, the graph of f crosses the
v-axis at y; and ys, but it is tangent to the y-axis at v and v4.
The precise location of the equilibrium points is not given, and the direction of the arrows on the
phase line is determined only by the sign (and not the magnitude) of f(y). So the following graph is
one of many possible answers.

)
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35. Since there are three equilibrium points (one appearing to be at y = 0), the graph of f(v) must touch
the y-axis at three numbers y;, y2, and v3. We assume that v < y2» = 0 < y3. Since the arrows
point down for vy < vy and y2» < ¥ < v3, f(v) < Ofor v < y; and for v» < ¥ < y3. Similarly,
F(»)>0ify; <y <yrandif y > ys.

The precise location of the equilibrium points 1s not given, and the direction of the arrows on the

phase line is determined only by the sign (and not the magnitude) of f(v). So the following graph is
one of many possible answers.

37.

fy)

(a) This phase line has two equilibrium points, y = 0 and y = 1. Equations (i1), (iv). (v1), and (vii1)
have exactly these equilibria. There exists a node at vy = 0. Only equations (iv) and (viii) have

a node at v = 0. Moreover, for this phase line, dy/dt < 0 for v = 1. Only equation (viii)
satisfies this property. Consequently, the phase line corresponds to equation (viii).

(b) This phase line has two equilibrium points, y = 0 and y = 1. Equations (i1), (iv), (vi) and (vii1)
have exactly these equilibria. Moreover, for this phase line, dv/dt > 0 for y > 1. Only
equations (iv) and (vi) satisfy this property. Lastly, dv/dt = 0 for v < 0. Only equation (vi)
satisfies this property. Consequently, the phase line corresponds to equation (vi).

(e) This phase line has an equilibrium point at y = 3. Only equations (1) and (v) have this equilib-
rium point. Moreover, this phase line has another equilibrium point at y = 0. Only equation (1)
satisfies this property. Consequently, the phase line corresponds to equation (1).

(d) This phase line has an equilibrium point at y = 2. Only equations (ii1) and (vii) have this
equilibrium point. Moreover, there exists a node at y = 0. Only equation (vi1) satisfies this
property. Consequently, the phase line corresponds to equation (vii).

(a) Because f(v) i1s continuous we can use the Intermediate Value Theorem to say that there must
be a zero of f(v) between —10 and 10. This value of v is an equilibrium point of the differential
equation. In fact, f(v) must cross from positive to negative, so if there is a single equilibrium
point, it must be a sink (see part (b)).

(b) We know that f(y) must cross the y-axis between —10 and 10. Moreover, it must cross from
positive to negative because f(—10) 1s positive and f(10) is negative. Where f(y) crosses the
y-axis from positive to negative, we have a sink. If y = 1 is a source, then crosses the y-axis
from negative to positive at v = 1. Hence, f(v) must cross the y-axis from positive to negative
at least once between y = —10 and y = 1 and at least once between y = 1 and vy = 10. There
must be at least one sink in each of these intervals. (We need the assumption that the number of
equilibrium points 1s finite to prevent cases where f(y) = 0 along an entire interval.)
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40. (a) The equilibrium points of d6/dt = f(8) are the numbers # where f(6) = 0. For
F(0) =1—cos0 + (1 +cosh) (-%) =2(1-2cos6),

the equilibrium points are @ = 2wn + /3, wheren =0, 4+1,+2, ... .

(b) The sign of df /dt alternates between positive and negative at successive equilibrium points. It
is negative for —m /3 < @ < m/3 and positive for m/3 < 8 < 5 /3. Therefore, /3 =01isa
source, and the equilibrium points alternate back and forth between sources and sinks.

y=mu/3 source
y=-—m/3 sink
y=—5m/3 source

43. (a) Because the first and second derivative are zero at yp and the third derivative is positive, Taylor’s
Theorem 1mplies that the function f(v) is approximately equal to

f.'.'.'(}_.oj
3!

for y near vg. Since f"”(yg) > 0.7 (y) is increasing near yg. Hence. yp is a source.

(v — )’

(b) Just as in part (a), we see that f(v) is decreasing near vg, SO Vp is a sink.
(¢) In this case, we can approximate f(y) near yg by

" (o)
|

2!

(v —yo)*.

Since the second derivative of f(y) at vp is assumed to be positive, f(v) is positive on both
sides of yp for ¥ near vp. Hence yp is a node.
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2. The equilibrium points occur at solutions of dy/dt = y> + 3y + a = 0. From the quadratic formula,

we have
B —3+.9—4a
= > )

-

“.'

Hence, the bifurcation value of a is 9/4. For a < 9/4, there are two equilibria, one source and one
sink. For a = 9/4, there 1s one equilibrium which is a node, and for a > 9/4, there are no equilibria.

'y
-3+ m l F Y
2
Y —3/2 & 'y
—3-V0-4 |
2 A
'3
a<9/4 a=9/4 a>9/4

Phase linesfora < 9/4,a = 9/4,and a = 9/4.
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3. The equilibrium points occur at solutions of dv/dr = y= — ay + 1 = 0. From the quadratic formula,

we have
_a + a2 —4
_T.

-

:‘.‘

If -2 < a < 2, then a®> — 4 < 0, and there are no equilibrium points. If 2 > 2 ora < —2, there
are two equilibrium points. For a = £2, there is one equilibrium point at v = @ /2. The bifurcations
occur at a = £2.

To draw the phase lines, note that:

e For -2 <a <2.dy/dt = y> —ay + 1 > 0, so the solutions are always increasing.
eFora=2.dv/dt =(v—1)>>0,and y = 1 is a node.

eFora=—-2,dy/dt =(y+1)>>0,and y = —1 is a node.

eFora < —2ora > 2 let

a—~ar—4 _a++ar-4

n=——7>—" ad y 7

Thendy/dt <0if vy < ¥y < y,anddy/dt > 0if y < yyory > y.

a++va?—4 1 ¢ a—JaZ—1

o

= 2
-1 r' -
a—+vaZ—4 F
-~ F
a< —2 a=—-2 —2<a<2 a=>2 az=2
The five possible phase lines.
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4. The equilibrium points occur at solutions of dy/dt = ¥ + ay?> = 0. For @ = 0, there is one
equilibrium point, vy = 0. For @ # 0, there are two equilibrium points, y = 0 and y = —a. Thus,
a = 0 1s a bifurcation value.
To draw the phase lines, note that:

elfae <0,dyv/dr =0onlyif y > —«.
elfa =0,dv/dr =0if vy = 0,and dv/dr < 0if vy < 0.
elfa = 0,dyv/dt <Qonlyif y < —«.

Hence, as ¢ increases from negative to positive, the source at y = —a moves from positive to
negative as it “passes through™ the node at y = 0.

a <0 a =0 a >0

11. For @ = 0, there are three equilibria. There is a sink to the left of y = 0, a source at vy = 0, and a

sink to the right of y = 0.

As « decreases, the source and sink on the right move together. A bifurcation occurs at @ ~ —2.
At this bifurcation value, there is a sink to the left of y = 0 and a node to the right of y = 0. For «
below this bifurcation value, there is only the sink to the left of ¥y = 0.

As o increases from zero, the sink to the left of ¥ = 0 and the source move together. There is a
bifurcation at @ ~¢ 2 with a node to the left of vy = 0 and a sink to the right of y = 0. For « above
this bifurcation value, there is only the sink to the right of y = 0.
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13. (a) Each phase line has an equilibrium point at v = 0. This corresponds to equations (1), (iii),
and (vi). Since vy = 0 is the only equilibrium point for A < 0, this only corresponds to equa-
tion (iii).

(b) The phase line corresponding to A = 0 is the only phase line with y = 0 as an equilibrium
point, which corresponds to equations (i1), (iv), and (v). For the phase lines corresponding to
A < 0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the
phase lines corresponding to A > 0, note that dy/dt < 0 for —/A < v < +/A. Consequently,
the bifurcation diagram corresponds to equation (v).

(¢) The phase line corresponding to A = 0 is the only phase line with y = 0 as an equilibrium
point, which corresponds to equations (ii), (iv), and (v). For the phase lines corresponding to
A < 0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the
phase lines corresponding to A > 0, note that dy/dt > 0 for —/A < v < +/A. Consequently,
the bifurcation diagram corresponds to equation (iv).

(d) Each phase line has an equilibrium point at v = 0. This corresponds to equations (1), (iii),
and (vi). The phase lines corresponding to A > 0 only have two nonnegative equilibrium
points. Consequently, the bifurcation diagram corresponds to equation (i).

18. (a) For all C = 0, the equation has a source at P = C /£, and this is the only equilibrium point.
Hence all of the phase lines are qualitatively the same, and there are no bifurcation values for C.

(b) If P(0) > C/k, the corresponding solution P (1) — 00 at an exponential rate as 1 — o0, and 1f
P(0) < C/k. P(r) - —o0, passing through “extinction”™ (P = 0) after a finite time.
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19. (a) A model of the fish population that includes fishing is

dP P

o = 2P — 0" 3L,
where L 1s the number of licenses issued. The coefficient of 3 represents the average catch of 3
fish per year. As L is increased, the two equilibrium points for L = 0 (at P = 0 and P = 100)
will move together. If L is sufficiently large, there are no equilibrium points. Hence we wish to
pick L as large as possible so that there is still an equilibrium point present. In other words, we
want the bifurcation value of L. The bifurcation value of L occurs if the equation

dP P?

— =2P - — 3L =0

dt 50
has just one solution for P in terms of L. Using the quadratic formula, we see that there is
exactly one equilibrium point if L = 50/3. Since this value of L is not an integer, the largest

number of licenses that should be allowed 1s 16.

(b) If we allow the fish population to come to equilibrium then the population will be at the carrying

capacity, which is P = 100 if L = 0. If we then allow 16 licenses to be issued, we expect that
the population is a solution to the new model with L = 16 and initial population P = 100. The
model becomes

dP p?
= = 2P — 0" 48,
which has a source at P = 40 and a sink at P = 60.
Thus, any initial population greater than 40 when fishing begins tends to the equilibrium
level P = 60. If the initial population of fish was less than 40 when fishing begins, then the

model predicts that the population will decrease to zero in a finite amount of time.

(e) The maximum “number” of licenses is 16%. With L = 16%, there is an equilibrium at P = 50.

This equilibrium 1s a node, and if P(0) > 50, the population will approach 50 as 7 increases.
However, it is dangerous to allow this many licenses since an unforeseen event might cause the
death of a few extra fish. That event would push the number of fish below the equilibrium value
of P = 50. In this case, d P /dt < 0, and the population decreases to extinction.

If, however, we restrict to L = 16 licenses, then there are two equilibria, a sink at P = 60
and source at P = 40. As long as P(0) > 40, the population will tend to 60 as r increases. In
this case, we have a small margin of safety. If P = 60, then it would have to drop to less than
40 before the fish are in danger of extinction.
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4. The general solution to the associated homogeneous equation is v, () = ke* . For a particular solu-
tion of the nonhomogeneous equation, we guess y,(f) = @ cos2r 4 fsin27. Then

dyp

7l 2yp = —2asm2r + 2B cos2t — 2(acos 2t + B sin2t)

= (28 — 2a)cos 2t + (—2a — 28) sin2t.
Consequently, we must have
(28 — 2a)cos 2t + (—2a — 2B) sin 2t = sin 2t

for y,(7) to be a solution, that is, we must solve

—2a-28=1
—2a+2=0.
Hence.a = —1/4 and B = —1/4. The general solution of the nonhomogeneous equation is

v(t) = ke” — %cos 2r — ‘11— sin 2t.

5. The general solution to the associated homogeneous equation is v;(r) = ke>'. For a particular so-

lution of the nonhomogeneous equation, we guess y,(f) = are> rather than we™ because e is a

solution of the homogeneous equation. Then

dy
-2 _ 3vp = ae’ + 3are’ — 3are™
dt
= ae’.
Consequently, we must have @ = —4 for y,(#) to be a solution. Hence, the general solution to the

nonhomogeneous equation is
yv(r) = ke — die.
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8. The general solution to the associated homogeneous equation is v;(r) = ke* . For a particular solu-
tion of the nonhomogeneous equation, we guess a solution of the form y,(7) = ae 2. Then

dy
._P _ z‘rp —_ _zwg _
dt

= —dge .

Consequently, we must have —4a = 3 for y(7) to be a solution. Hence, @ = —3/4, and the general
solution to the nonhomogeneous equation 1s

v(t) = ke” — %e_zf.
Since y(0) = 10, we have
.3
10=Fk -3,
so k = 43 /4. The function
y(1) = ﬁ:‘_3€2t B %e—zr

is the solution of the initial-value problem.
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10. The general solution of the associated homogeneous equation is yj(r) = ke . For a particular so-
lution of the nonhomogeneous equation, we guess a solution of the form y, (1) = @ cos 2t + B sin2t.

Then

dv
% + 3y, = —2asin2r 4+ 2B cos2t + 3acos2t + 3B sin 2t

= (3a +2B)cos2r + (—2a + 38) sin2z.
Consequently, we must have
(3 +2B)cos 2t + (—2a + 3B) sin 2r = cos 2t
for y,(7) to be a solution. We must solve
3a+28=1
—2a+3p=0.
Hence,a = 3/13 and B = 2/13. The general solution to the differential equation is
v(r) = ke 1 % cos2r + 1—23 sin 2f.

To find the solution of the given imtial-value problem, we evaluate the general solution at t = 0
and obtain

v0) =k + .

Since the initial condition is ¥(0) = —1, we see that k = —16/13. The desired solution 1s

(1) = —16,-3t 3 2 cin?
y(t) = —g3€ " +g3c0s2f + {3 sm2i.
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20.If yp(r) = at® 4 br + ¢, then
dyp " 2
= +2yp, =2art + b+ 2ar” + 2br 4+ 2c
= 2at” + (2a + 2b)t + (b 4 2c).

Then y,(7) is a solution if this quadratic is equal to 3t2 4+ 2t — 1. In other words, ¥p(?) 1s a solution
if

2a =3
2a+2b=2
b+2c=-1.
From the first equation, we have @ = 3/2. Then from the second equation, we have b6 = —1/2.

Finally, from the third equation, we have ¢ = —1/4. The function

L 3,2 1
Vp(r) = 517 — 51 —

e

is a solution of the differential equation.
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21. To find the general solution, we use the technique suggested in Exercise 19. We calculate two partic-
ular solutions — one for the right-hand side 7> + 2¢ + 1 and one for the right-hand side e*.
With the right-hand side > + 27 + 1, we guess a solution of the form

¥p, (1) = ar® + bt +c.

Then

d '
;.:1 + 2y, =2at +b+2ar* +br +¢)

= 2ar®> + (2a + 2b)t + (b + 2¢).

Then yj, is a solution if

2a=1
2a+2b=2
b+2c=1.

Wegeta=1/2.b=1/2,andc = 1/4.
With the right-hand side ¢* , we guess a solution of the form

4t
Vp, (1) = ae™.

Then J
-"‘ s
-2 4 2yp, = Age* + 2ae* = 6ae™,
dr '

and y,, 1s a solution if @ = 1/6.
The general solution of the associated homogeneous equation is v,(¢) = ke %', so the general
solution of the original equation is

ke ™ + %rz + %r - % + %e'ﬂ".

To find the solution that satisfies the imitial condition y(0) = 0, we evaluate the general solution
at t = 0 and obtain

k+ =0.

=

-+

A=

Hence. & = —5/12.
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30. Let M(r) be the amount of money left at time 7. Then, we have the initial condition M (0) = $70,000.
Money is being added to the account at a rate of 1.5% and removed from the account at a rate of
$30,000 per year, so

ﬁ = 0.015M — 30,000.
dt
To find the general solution, we first compute the general solution of the associated homoge-
neous equation. It is My (r) = k0015t
To find a particular solution of the nonhomogeneous equation, we observe that the equation is
autonomous, and we calculate its equilibrium solution. It is M () = 30,000/.015 = $2,000,000 for

all . (This equilibrium solution 1s what we would have calculated if we had guessed a constant.)
Therefore we have

M(r) = 2,000,000 + k%0157,
Using the initial condition M (0) = 70,000, we have

2,000,000 + £ = 70,000,

so k = —1,930,000 and
M(r) = 2,000,000 — 1,930,000£%-01%

Solving for the value of r when M(t) = 0, we have

2,000,000 — 1,930,000°°% = 0,

which is equivalent to
0015t _ 2,000,000

~1,930,000°
In other words,
0.015¢ = In(1.03627),

which yields r ~ 2.375 years.
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