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(b) The solution v(r) with ¥(0) = 1/2 in-
creases with v(r) — ©0C as t increases.
As t decreases, y(t) — —00.
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13. The slope field in the ry-plane is constant along vertical lines.

1
=

e e e e e e e e e e e e e e e

14. Because f depends only on y (the equation 1s autonomous), the slope field is constant along hori-
zontal lines in the ry-plane. The roots of f correspond to equilibrium solutions. If f(v) = 0, the
corresponding lines in the slope field have positive slope. If f(y) < 0, the corresponding lines in the
slope field have negative slope.
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16.

18.

(a) This slope field is constant along horizontal lines, so it corresponds to an autonomous equation.
The autonomous equations are (i), (i), and (ii1). This field does not correspond to equation (ii)
because it has the equilibrium solution y = —1. The slopes are negative for v < —1. Conse-
quently, this field corresponds to equation (iii).

(b) Note that the slopes are constant along vertical lines—lines along which 7 is constant, so the
right-hand side of the corresponding equation depends only on . The only choices are equa-
tions (iv) and (viii). Since the slopes are negative for —2 <t < /2, this slope field corre-
sponds to equation (viii).

(e) This slope field depends both on v and on ¢, so it can only correspond to equations (v), (v1),
or (vii). Since this field has the equilibrium solution y = 0, this slope field corresponds to
equation (v).

(d) This slope field also depends on both y and on 7, so it can only correspond to equations (v),
(vi), or (vi1). This field does not correspond to equation (v) because y = 0 1s not an equilib-
rium solution. Since the slopes are nonnegative for y > —1, this slope field corresponds to
equation (vi).

(a) Because the equation 1s autonomous, the slope field is constant on horizontal lines, so this solu-
tion provides enough information to sketch the slope field on the entire upper half plane. Also,
if we assume that f is continuous, then the slope field on the line y = 0 must be horizontal.

(b) The solution with initial condition y(0) = 2 is a translate to the left of the given solution.

y
y(0)=2
t
Table 1.2 y
Results of Euler’s method (yx 14
rounded to two decimal places)
0.751 . o -
k t Vi mp *
0 0 1 1 057
1 025 0.75 -0.3125 025+
2 0.5 0.67 0.0485
! } } — ¢
3 0.75 0.68 0.282 0.25 05 0.75 1
4 1.0 0.75
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4.

Table 1.4

Results of Euler’s method (to two

decimal places)

k fk Yk mg
0 0 1 0.84
1 0.5 142 0.99
2 1.0 1.91 0.94
3 15 2.38 0.68
4 2.0 273 040
5 2.5 2.93 021
6 3.0 303
Table 1.5
Results of Euler’s method
k 1y Wk M
0 0 4 -5
1 1 -1 0
2 2 -1 0
3 3 -1 0
4 4 -1 0
5 5 -1
Table 1.6

Results of Euler’s method (shown
rounded to two decimal places)

bl

T Wy M
0 0 0 3
1 0.5 15 3.795
2 1.0 3.38 —1.64
3 L5 2.55 1.58
- 20 3.35 —1.50
5 25 2.59 146
6 3.0 3.32 —1.40
7 3.5 2.62 1.36
8 4.0 3.31 —1.31
9 4.5 2.65 1.28
10 50 3.29
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14. Euler’s method 1s not accurate in either case because the step size is too large. In Exercise 5, the
approximate solution “jumps onto™ an equilibrium solution. In Exercise 6, the approximate solution
“crisscrosses” a different equilibrium solution. Approximate solutions generated with smaller values
of At indicate that the actual solutions do not exhibit this behavior (see the Existence and Uniqueness
Theorem of Section 1.5).

15.
Table 1.13

Results of Euler’s method with
At = 1.0 (shown to two

decimal places)
koot Yk mg
0 0 1 1
1 1 2 141
2 2 341 1.85
3 3 526 2.29
4 4 756
Table 1.14
Results of Euler’s method with At = 0.5 (shown to two decimal places)
ko % Yk my ko % Yk my
0 0 1 1 5 25 4.64 2.15
1 03 1.5 1.22 6 3.0 5.72 2.39
2 1.0 211 145 7 35 6.91 2.63
3 1.5 2.84 1.68 8 4.0 8.23

+ 20 3.68 1.92

Table 1.15
Results of Euler's method with At = 0.25 (shown to two decimal places)

k fk Yk mj k t Yk mp
0 ] 1 1 9 2.25 4.32 2.08
1 0.25 1.25 1.12 10 2.50 4,84 2.20
2 0.50 1.53 1.24 11 2.75 5.39 2.32
3 0.75 1.84 1.36 12 30 597 244
4 1.0 2.18 1.48 13 3.25 6.58 2.56
5 1.25 2.55 1.60 14 3.50 723 2.69
6 1.50 294 1.72 15 3.75 7.90 281
7 1.75 3.37 1.84 16 4.0 8.60

8 2.0 3.83 1.96
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The slopes in the slope field are positive and increasing. Hence, the graphs of all solutions are
concave up. Since Euler’s method uses line segments to approximate the graph of the actual solution,
the approximate solutions will always be less than the actual solution. This error decreases as the step

size decreases.

} -t

1 2 3 4

2. Since y(0) = 1 is between the equilibrium solutions y»(¢#) = 0 and y3(t) = 2, we must have
0 < v(r) < 2 for all r because the Uniqueness Theorem implies that graphs of solutions cannot
cross (or even touch in this case).

4. Because y1(0) < y(0) < v2(0), the solution y() must satisfy yy(r) < v(r) < y2(t) for all 7 by the
Uniqueness Theorem. Hence —1 < y(z) < 1 + 1% forall z.
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9. (a) To check that y;(r) = £2 is a solution, we compute

dl‘l
- 7

drt !
and

—vidn A2t 42— = D 20D 2 -
= qf

Py

To check that y2(r) = % + 1 is a solution, we compute
dys
dt

=2t

and
—}‘% tyv42wit 2t =P )PP+ D2+ D2
+2r—1*—1*
= 2t.

(b) The initial values of the two solutions are v1(0) = 0 and y2(0) = 1. Thus if v(¢) is a solution

(c)

and v1(0) =0 < y(0) < 1 = y2(0), then we can apply the Uniqueness Theorem to obtain
i) =12 <y <>+ 1=»0)

for all 7. Note that since the differential equation satisfies the hypothesis of the Existence and
Uniqueness Theorem over the entire 7 y-plane, we can continue to extend the solution as long as
it does not escape to £00 in finite time. Since it is bounded above and below by solutions that
exist for all time, y(7) is defined for all time also.
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10. (a) If ¥(r) = O for all ¢, then dv/dr = 0 and 2./|v(z)| = O for all z. Hence, the function that is
constantly zero satisfies the differential equation.

(b) First, consider the case where y > 0. The differential equation reduces to dy/dr = 2,/y. If we
separate variables and integrate, we obtain

VI’."_'.:I_C:

where ¢ is any constant. The graph of this equation is the half of the parabola v = (t — ¢)?
where t = c.

Next, consider the case where y < 0. The differential equation reduces to dy/dr = 2./—.

If we separate variables and integrate, we obtain

=y=d—1,

where d is any constant. The graph of this equation is the half of the parabola y = —(d — 1)?
wheret < d.

To obtain all solutions, we observe that any choice of constants ¢ and d where ¢ > d leads
to a solution of the form

—(d—1)?, ifr<d;

y(ir) =10, ifd <t <c:
(t — )2, ifr = c.
(See the following figure for the case whered = —2andc = 1.)

(¢) The partial derivative af/dy of f(r, v) = 4/|v| does not exist along the 7-axis.
(d) If yp = 0. HPGSolver plots the equilibrium solution that is constantly zero. If yp # 0, 1t plots

a solution whose graph crosses the 7-axis. This 1s a solution where ¢ = 4 in the formula given
above.
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11. The key observation is that the differential equation is not defined when r = 0.

(a) Note that dv; /dt =0 and }‘1{:2 =0, s0 y1() is a solution.
(b) Separating variables, we have
dy dt
[5=]+

1/t where ¢ is any constant. Thus, for any real number c,

Solving for y we obtain v(7) = ce™
define the function y.(7) by

0 forr <0

)"c('r:' =
ce Y forr > 0.

For each ¢, y.(t) satisfies the differential equation for all r # 0.

—4 =+

There are infinitely many solutions of the
form ye(t) that agree with y () for ¢ < 0.

(e) Note that f(z, y) = y/t? is not defined at r = 0. Therefore, we cannot apply the Uniqueness
Theorem for the initial condition y(0) = 0. The “solution™ v.(r) given in part (b) actually
represents two solutions, one for 1 < 0 and one for ¢ > 0.
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18. (a)

(b)

(c)

Solving for r, we get

3w\/3

3p\?/3
—Ar [ —
5(1) H(-fhr)

= cv(!}zf?’,

Consequently,

where ¢ 1s a constant. Since we are assuming that the rate of growth of v(t) is proportional to
its surface area s(7), we have

23,
dt v

where £ is a constant.

The partial derivative with respect to v of dv/dt does not exist at v = 0. Hence the Uniqueness
Theorem tells us nothing about the uniqueness of solutions that involve v = 0. In fact, if we use
the techniques described in the section related to the uniqueness of solutions for dv/dr = 3v>/3,
we can find infinitely many solutions with this initial condition.

Since it does not make sense to talk about rain drops with negative volume, we always have
v > 0. Once v > 0, the evolution of the drop is completely determined by the differential
equation.

What is the physical significance of a drop with v = 07 It is tempting to interpret the fact
that solutions can have v = 0 for an arbitrary amount of time before beginning to grow as a
statement that the rain drops can spontaneously begin to grow at any time. Since the model
gives no information about when a solution with v = 0 starts to grow, it is not very useful for
the understanding the initial formation of rain drops. The safest assertion 1s to say is the model

breaks down if v = 0.
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4. The equilibrium points of dw/dt = f(w)
are the numbers w where f(w) = 0. For
f(w) = wcosw, the equilibrium points are
w = 0and w = /2 + nw, where n = 0,
+1, 4+2, .... The sign of wcosw alternates
positive and negative at successive zeros. It is
negative for —m/2 < w < 0 and positive for
0 < w < w/2. Therefore, w = 0 is a source,
and the equilibrium points alternate back and
forth between sources and sinks.

w=um/2 sink
w=20 source

w=—m/2 sink

6. This equation has no equilibrium points, but
the equation is not defined at y = 2. For
v = 2,dy/dt = 0, so solutions increase. If
v < 2,dy/dt < 0, so solutions decrease. The
solutions approach the point ¥y = 2 as time de-
creases and actually arrive there in finite time.
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8. The equilibrium points of dw/dt = f(w) are
the numbers w where f(w) = 0. For f(w) =
3w’ — 12w?, the equilibrium points are w = 0
and w = 4. Since f(w) < 0 for w < 0 and
0 <w < 4,and f(w) > 0 for w > 4, the
equilibrium point at w = 0 is a node and the
equilibrium point at w = 4 is a source.

w=4 % source

w=0 ® node

16. w

18. ¥

|
3
a4

The equation 1s undefined at y = 2.
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20. w
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