HWH#1 Solutions

2. Note that dy/dt = 0 for all ¢ only if y> — 2 = 0. Therefore, the only equilibrium solutions are
v(t) = —+/2 for all 7 and () = 4++/2 forall 7.

4. (a) The equilibrium solutions correspond to the values of P for which d P /dt = 0 for all ¢. For this
equation, d P /dt =0 foralltif P =0, P =50,0r P = 200.
(b) The population is increasing if dP/dt > 0. Thatis, P < 0or 50 < P < 200. Note, P < 0
might be considered “nonphysical” for a population model.

(¢) The population is decreasing if d P /dr < 0. Thatis,0 < P < 50 or P = 200.

5. In order to answer the question, we first need to analyze the sign of the polynomial y> — y2 — 12y.
Factoring, we obtain

Y =y =12y =307 -y —12) =y(y —H(y +3).

(a) The equilibrium solutions correspond to the values of y for which dy/dt = 0 for all 7. For this
equation, dy/dt =0foralltif y=-3,y=0,0ory =4.

(b) The solution y(r) is increasing if dv/dr > 0. Thatis, -3 <y <Oory > 4.

(¢) The solution y(r) is decreasing if dv/dr < 0. Thatis,y < —3or0 < v < 4.

6. (a) The rate of change of the amount of radioactive material is dr /dt. This rate is proportional to
the amount 7 of material present at time 7. With —X as the proportionality constant, we obtain

the differential equation

dr .

de
Note that the minus sign (along with the assumption that A is positive) means that the material
decays.

(b) The only additional assumption is the initial condition 7(0) = rg. Consequently, the corre-
sponding initial-value problem is

rfr_ . 0) —
df__ k) r()_rﬂ-

11. The solution of d R /dt = kR with R(0) = 4,000 is
R(r) = 4,000,
Setting 1 = 6, we have R(6) = 4,000 ¢®© = 130,000. Solving for &, we obtain

k=4 (5580) ~ 0.58.

Therefore, the rabbit population in the year 2010 would be R(10) = 4,000 ¢©-810) ~ ] 321,198
rabbats.
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12. (a) In this analysis, we consider only the case where v 1s positive. The right-hand side of the dif-
ferential equation is a quadratic in v, and it is zero if v = ,/mg/k. Consequently, the solution
v(t) = /mg/k for all ¢ is an equilibrium solution. If 0 < v < /mg/k, then dv/dt > 0, and
consequently, v(r) is an increasing function. If v > /mg/k, then dv/dr < 0, and v(r) is a
decreasing function. In either case. v(t) — . /mg/k as r — 00.

(b) See part (a).

17. Let P(t) be the population at time 7, & be the growth-rate parameter, and N be the carrying capacity.
The modified models are

(a)dP/dt =k(1 — P/N)P — 100
(bydP/dt =k(1 - P/N)P —P/3
(e)dP/dt =k(1 — P/N)P — a+/ P, where a is a positive parameter.

18. (a) The differential equation is d P /dt = 0.3P(1 — P/2500) — 100. The equilibrium solutions of
this equation correspond to the values of P for which d P /dt = 0 for all 7. Using the quadratic
formula, we obtain two such values, P, ~ 396 and P, ~ 2104. If P = P>, dP/dt < 0, s0
P(t)isdecreasing. f Py < P < P>, dP/dt = 0,s0 P(r) is increasing. Hence the solution that
satisfies the initial condition P (0) = 2500 decreases toward the equilibrium P> ~ 2104.

(b) The differential equation is d P /dt = 0.3P(1 — P/2500) — P /3. The equilibrium solutions of
this equation are P} ~ —277and P» =0.If P = 0,dP/dt < 0, s0 P(t) is decreasing. Hence,
for P(0) = 2500, the population decreases toward P = 0 (extinction).

21. (a) The term governing the effect of the interaction of x and y on the rate of change of x is +8xy.
Since this term is positive, the presence of y’s helps the x population grow. Hence, x is the
predator. Similarly, the term —8xy in the dy/dr equation implies that when x > 0, y’s grow
more slowly, so y 1s the prey. If y = 0, then dx /dt < 0, so the predators will die out; thus, they
must have insufficient alternative food sources. The prey has no limits on its growth other than
the predator since, if x = 0, then dv/dt = 0 and the population increases exponentially.

(b) Since —fBxy is negative and +8xy is positive. x suffers due to its interaction with v and v ben-
efits from its interaction with x. Hence, x 1s the prey and y is the predator. The predator has
other sources of food than the prey since dv/dr > 0 even if x = 0. Also, the prey has a limit
on its growth due to the —ax?/N term.

Page 2




HWH#1 Solutions

22. (a) We consider dx/dt in each system. Setting v = 0 yields dx/dr = 5x in system (i) and
dx/dt = x in system (i1). If the number x of prey is equal for both systems, dx/dt is larger in
system (1). Therefore, the prey in system (i) reproduce faster if there are no predators.

(b) We must see what effect the predators (represented by the y-terms) have on dx /dt in each sys-
tem. Since the magnitude of the coefficient of the xy-term is larger in system (i1) than in sys-
tem (1), y has a greater effect on dx /dt in system (i1). Hence the predators have a greater effect
on the rate of change of the prey in system (ii).

(¢) We must see what effect the prey (represented by the x-terms) have on dv/dt in each system.
Since x and y are both nonnegative, it follows that

—2y+ %X}" < —2y + 6xy,

and therefore, if the number of predators is equal for both systems, dy/dt is smaller in sys-
tem (1). Hence more prey are required in system (1) than in system (ii1) to achieve a certain
growth rate.

1. (a) Let’s check Bob’s solution first. Since dv/df = 1 and

}’(r)+1_t+1_1
t+1  r4+1

1

Bob’s answer 1s correct.
Now let’s check Glen’s solution. Since dy/dr = 2 and

YO +1_ 242,
r4+1 1

Glen’s solution is also correct.
Finally let’s check Paul’s solution. We have dv/dr = 2t on one hand and

yny+1  2-1
t+1 41

on the other. Paul is wrong.
(b) At first glance, they should have seen the equilibrium solution y(r) = —1 for all ¢ because
dy/dt = 0 for any constant function and vy = —1 implies that

v+l
r+1

0

independent of 7.
Strictly speaking the differential equation 1s not defined for + = —1, and hence the solutions are not
defined forr = —1.
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3. In order to find one such f(z, v), we compute the derivative of y(r). We obtain
dy d et’ B
dt  dt

i

Now we replace ¢ ? in the last expression by v and get the differential equation

8. Separating variables and integrating, we obtain

1
[2_}__9'}':[(1'1'

—In2-y[=r+c

]l1|2— 1" = —I +C1:
where we have replaced —c¢ with ¢;. Then
|2 - WI = k]'e_t!

where k1 = e{. We can drop the absolute value signs if we replace &7 with &>, that is, if we allow
k> to be either positive or negative. Then we have

2—yv=rkoe!
y=2—loe .
This could also be written as v(r) = ke~ + 2, where we replace —k» with k. Note that £ = 0 gives

the equilibrium solution.

9. We separate variables and integrate to obtain

feyd}'zjdr

e =r1r+ec,

where ¢ is any constant. We obtain v(r) = In(r 4 ¢).
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12. Separating variables and integrating, we obtain

f}*d}*:[rdr

2 2
y f
7 =7+
“2 :fz—|—(,‘,

where ¢ = 2k. Hence,
() =V +c,

where the initial condition determines the choice of sign.

16. Note that there is an equilibrium solution of the form y = —1/2.
Separating variables and integrating, we have

1 1
dv= | =dt
f2y+15‘ fr

1
;lulZ}-‘+1|:]J1|r|+c

In2y+1=MWmH)+c
2y + 1] = err?,

where ¢; = ¢°. We can eliminate the absolute value signs by allowing the constant ¢; to be either
positive or negative. In other words, 2y + 1 = k172, where k1 = %c;. Hence,

() =ki* — 3,

where £ = k1 /2, or v(r) is the equilibrium solution with vy = —1/2.
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17. First of all, the equilibrium solutions are vy = O and y = 1. Now suppose v # Oand v # 1. We

separate variables to obtain
1
——dy= | dt =1t
[}'(l—r) ! [ rmrre

where c is any constant. To integrate, we use partial fractions. Write

1 A B

Yi-» ¥ Iy
Wemusthave A=1and — A4+ B =0. Hence, A = B =1 and
1 1 1

y(1—y) _}_=+ 1—y

Consequently,

1 v
— dy=hly|-hh|l—y|=In|—=
f}‘(l—}*) . i 1= ‘1—}*

After integration, we have

v

|

=f+c
1—vy

"‘_.'
‘ - =€,

|

where ¢; = € is any positive constant. To remove the absolute value signs, we replace the positive
constant ¢; with a constant & that can be any real number and get

ke'

."’(f):m:

where k = +c;. If £ = 0, we get the first equilibrium solution. The formula y(r) = ke’ /(1 + ke')
yields all the solutions to the differential equation except for the equilibrium solution v(r) = 1.
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25. Separating variables and integrating, we have

|
f—rf.r:[—.fde‘
X

2
In|x| = -5 +c

i -y
|x| = ke 72,

where k&1 = ¢°. We can eliminate the absolute value signs by allowing the constant &) to be either
positive or negative. Thus, the general solution is

x(r) = ke_tzfz

where & = 4k, . Using the initial condition to solve for k., we have

1 0
S/—,E—.l((]]—kﬁ’ =k.

Therefore.
e—:z /2

v

x() =

26. Separating variables and integrating, we have

1
f—d}-‘:f.fdr
}.-

Iz
Iyl = ke /2,

where k&1 = ¢°. We can eliminate the absolute value signs by allowing the constant &) to be either
positive or negative. Thus, the general solution can be written as

(1) = kerzﬁ.
Using the initial condition to solve for &, we have
3=vy(0) =ke® =k%.

Therefore, y(r) = 36,’!2"{2.
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30. Rewriting the equation as
dy t
dt (1 —12)y’

we separate variables and integrate obtaining

I
rdy = dr
[rar=[ 15

2

.- 1
%:_Eml_:iue

}..-:i\/_m|1_:2|+k.

Since v(0) = 4 is positive, we use the positive square root and solve

4=y =/ RITTE=vE

for &. We obtain £ = 16. Hence,

y(1) = /16 — In(1 — 12).

We may replace |1 — 2| with (1 — %) because the solution is only defined for —1 < r < 1.
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32. First we find the general solution by writing the differential equation as

dy
— = (t+2)y°
T (r+2)y7,

separating variables, and integrating. We have

f%d;-:f(rﬁ}d:
.

1 72
e =— 42 +e

y 2
244t + ¢

_p-) ?

.

where ¢; = 2¢. Inverting and multiplying by —1 produces

-2
i) = 2 v Ar +cp
Setting
-2
l=v0)=—
C1
and solving for ¢1, we obtain c; = —2. So
(1) 2
V(1) = =————.
' 24 4r -2

Page 9




HWH#1 Solutions

35. We separate variables to obtain

[ dy :frdr
1+ y?

2
arctan y = E +c,

where c is a constant. Hence the general solution is

I2
¥(1) = tan (3 — c.‘) .

Next we find ¢ so that y(0) = 1. Solving

02
1 =tan 3+c

yields ¢ = m /4, and the solution to the initial-value problem is

) —t 2w
v(r) = tan 34—1 .

Page 10




HWH#1 Solutions

41. (a) If we let & denote the proportionality constant in Newton’s law of cooling, the differential equa-
tion satisfied by the temperature T of the chocolate 1s

dT
— =Kk(T —70).
o ( )

We also know that 7(0) = 170 and that 4T /dt = —20 at t = (. Therefore, we obtain k£ by
evaluating the differential equation at t+ = 0. We have

—20 = k(170 — 70),

so k = —0.2. The initial-value problem is

dT
—=-02T-70), T(©)=170.

(b) We can solve the initial-value problem in part (a) by separating variables. We have

T
fT—TO :f—O.Zdr

W|T —70| = 0.2 +k

1T — 70| = ce 0¥,

Since the temperature of the chocolate cannot become lower than the temperature of the room,
we can ignore the absolute value and conclude

T(t) =70+ ce .
Now we use the initial condition 7(0) = 170 to find the constant ¢ because
170 = T(0) = 70+ ce 2O,
which implies that ¢ = 100. The solution is
T =70+ 100 .
In order to find 7 so that the temperature is 110° F, we solve
110 = 70 + 100e ¥

for ¢ obtaining

so that

Page 11




