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4. To compute the general solution of the unforced equation, we use the method of Section 3.6. The
characteristic polynomial 1s
5% 4-4s + 13,

so the eigenvalues are s = —2 £ 3i. Hence, the general solution of the homogeneous equation is
k1e % cos 3t + kre ' sin 3t.

To find a particular solution of the forced equation, we guess y,(r) = ke™'. Substituting into the
left-hand side of the differential equation gives
d 2}-‘p dyp

— + 4F + 13y, =ke ™ —4ke™ 4+ 13ke™"

= 10ke™".

In order for y,(z) to be a solution of the forced equation, we must take £ = 1/10. The general
solution of the forced equation is

(1) = kye= cos 3t 4 kye X sin 3t + %e‘t.

7. To compute the general solution of the unforced equation, we use the method of Section 3.6. The
characteristic polynomial 1s
s> — 55 44,

so the eigenvalues are s = | and 5 = 4. Hence, the general solution of the homogeneous equation is
k1 el + ﬂ'gé’d”.

To find a particular solution of the forced equation, a reasonable looking guess is y,(f) = ke* .
However, this guess is a solution of the homogeneous equation, so it is doomed to fail. We make
the standard second guess of y,(1) = kte¥ . Substituting into the left-hand side of the differential
equation gives

2., ,

—5—2 4 Ay, = (8ke* + 16kre™) — S(ke* + dkre™) + Akre*
dr? dt £

= 3ke*.

In order for y,(¢) to be a solution of the forced equation, we must take £ = 1/3. The general solution

of the forced equation 1s
v(t) = ke +ke¥ + %red't.
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10. First we derive the general solution. The characteristic polynomial is
s2 + 75 4 12,

so the eigenvalues are s = —3 and s = —4. To find the general solution of the forced equation,
we also need a particular solution. We guess y, (1) = ke~ and find that y,(¢) is a solution only if
k = 1/2. Therefore, the general solution is

v(t) = kie 3 4 ke + %e‘r.
To find the solution with the initial conditions y(0) = 2 and y'(0) = 1. we compute
V(1) = —3kie™> — Akpe™ — %e_t.
Then we evaluate at 1 = 0 and obtain the simultaneous equations
itk +3=2
3k — 4k — 3 =1
Solving, we have k1 = 15/2 and k» = —6, so the solution of the initial-value problem is

v(r) = %e_y —6e™H 4+ %e_‘.
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18. (a) The characteristic polynomial of the unforced equation is
s> 1+ 4s +20.
So the eigenvalues are s = —2 + 4i, and the general solution of the unforced equation is
kre % cosdr + kre > sindr.

To find a particular solution of the forced equation, we guess y,(1) = ke—* . Substituting
vp(t) mto the left-hand side of the differential equation gives
dyp

d'2 s
d:zp +aA== 4 20y = 16ke™* — 16ke™¥ 4 20ke™

= 20ke™¥.

So & = 1/20 yields a solution of the forced equation.
The general solution of the forced equation is therefore
v(r) = }cle_zr cosdr + f(ge_zr sinds + %e_‘".
(b) The derivative of the general solution is

V(1) = —k1e Fcos 4t — dkye™ ¥ sindr

—2kre™ sindt + Akre™ cosdr — %e““.

To find the solution with v(0) = y'(0) = 0, we evaluate at r = 0 and obtain the simultaneous
equations
k1 + % =0

—2k1 + 4k, — 3 =0,
Solving, we find that &3 = —1/20 and &> = 1/40, so the solution of the initial-value problem is

y() = —%e_m cosdr + 41—06_3 sin4r + 2—%6““.

(e) From the formula for the general solution, we see that every solution tends to zero. The e=#

term in the general solution tends to zero quickest, so for large 7, the solution is very close to the
unforced solution. All solutions tend to zero and all but the purely exponential one oscillates
with frequency 2/ and an amplitude that decreases at the rate of e
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35. (a) The general solution of the homogeneous equation is
k1 cos2r + ko sin 2.
To find a particular solution to the nonhomogeneous equation, we guess
yp(t) = ar’ + bt +c.
Substituting y,(7) into the differential equation yields

d*y t
P N _

2a +4(ar> +bt +c)=1 — —

Aa)r®> + (4b)t + 2a +4c) =1 — =

20
Equating coefficients, we obtain the simultaneous equations
ta=—4
4b =1
2a+4c=0.
Therefore, a = —1/80, 5 = 1/4, and ¢ = 1/160 yield a solution to the nonhomogeneous

equation, and the general solution of the nonhomogeneous equation is
, — I : 1.2 1 1
y(t) =kycos2i +-kpsin2i — g5+ 31+ 155+

(b) To solve the initial-value problem with y(0) = 0 and y'(0) = 0, we have

Therefore, k&1 = —1/160 and k» = —1/8. and the solution is
y(t) = —%cosﬁe‘ — % sin 21 — %12 + %,r + %

(e) Since the solution to the homogeneous equation is periodic with a small amplitude and since
the solution to the nonhomogeneous equation goes to —0o0 at a rate determined by —r2/80, the
solution tends to —00.
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42. (a) To find the general solution of the unforced equation, we note that the characteristic polynomial
is 5> + 4, which has roots s = 42i. So the general solution of the unforced equation is

ki cos 2t + ko sin 2t.
To find a particular solution of the forced equation we guess
yp(t) =a+br+ ct® + de'.
Substituting this guess into the differential equation yields
Qe+ deé')+4(a+bt +ct> +de')=6+1>+ ¢,
which simplifies to
(2c +4a) + (@b)t + (o)t* + (5d)e’ =6 +17 + €.

Sod =1/5,¢c=1/4,b = 0, and a = 1/8 yield a solution, and the general solution of the
forced equation is
y(t) =kicos2t +kysin2r + & + 317 + 1.

(b) Note that
v/(t) = —2ky sin 2t 4 2k, cos 2t + %r + %gt_

To obtain the desired imtial conditions we must solve
11 1 _
.'%1 + T + 5= 0'
2%k + 1 =0,
which yields £y = —63/40 and k» = —1/10. The solution of the initial-value problem is
v(t) = —gg cos 2t — % sin 21 + % + %3‘2 - %e‘.
(e) This solution tends to infinity at a rate that is determined by e’ /5 because this term dominates

when 7 1s large.

1. Since the equilibrium point is at the origin and the system has only polynomial terms, the linearized
system 1is just the linear terms in dx /dt and dy /dt, that is,
dx
dt
dy _ —2y.

- =

2. From the linearized system in Exercise 1, we see (without any calculation) that the eigenvalues are 1
and —2. Hence, the origin 1s a saddle.
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3. The Jacobian matrix for this system 1s

2x 4+ 3cos3x 0
_“ cOos _'.[)-' 2 — X COSs -T_‘r'. ,

(22)

and evaluating at (0, 0), we get

So the linearized system at the origin 1s

dx
— —3x
dt *
dy
—_ =2v.
dr Y

4. From the linearized system in Exercise 3, we see (without any calculation) that the eigenvalues are 3
and 2. Hence, the origin is a source.

5. The x-nullcline is where dx /dr = 0, that is, the line y
v = x. The y-nullcline is where dy/dt = 0, that is, P E
the circle x2 + y? = 2.

Along the x-nullcline, dy/dt < 0 if and only if
2 <x <2 Along the y-nullchne, dx /dt < 0if
and only if v > x.
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6. This system is not a Hamiltonian system. If it were, then we would have

0H  dx d oH dy

By ar ax  dr

for some function H (x, y). In that case, equality of mixed partials would imply that

d (dx\ 9 (dy
ax \dr )~ ay\dt)’
For this system, we have

d [dx a fdv
—_ —_— — 7  — —_ — _2 .
ax (rfr ) 2y and oy (de‘ ) )

Since these two partials do not agree, no such function H(x, y) exists.

11. True. The x-nullcline is where dx/dt = 0 and the y-nullcline is where dy/dr = 0, so any point in
common must be an equilibrium point.

14. False. The Jacobian matrix at an equilibrium point (xp, vp) is

f(xo0) 0
dg dg . :
E(AD? 1'0) a_\r (J'D! -"DJ
s0 its eigenvalues are f'(xg) and
ag
E(los -"G)

Since this partial derivative could be positive, negative, or zero, the equilibrium point could be a
source, a saddle, or one of the zero eigenvalue types.
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15. (a) Setting dx/dt = 0 and dy/dt = 0, we obtain the simultaneous equations

x—3y2=0

x—3v—-6=0.

Solving for x and vy yields the equilibrium points (12, 2) and (3, —1).
To determine the type of an equilibrium point, we compute the Jacobian matrix. We get

(177)
(17%)

and its eigenvalues are —1 £ 24/2i. Hence, (12,2)is a spriral sink.
At (3, —1). the Jacobian matrix 1s
1 6
1 -3/

and the eigenvalues are —1 £ 4/10. So (3, —1) is a saddle.

At (12, 2). the Jacobian is
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(b) The x-nullcline is x = 3v2, and the (e)
v-nullcline is x = 3y + 6. We com-
pute the direction of the vector field by
computing the sign of dv/dt on the x-
nullcline and the sign of dx/dt on the

v-nullcline.
y y
= =
2__ e
1+ 17
1
I X
6 12
-1+
2
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17. (a) To find the equilibria, we solve the system of equations

2

4x —x—xy=0

6y —2y2 —xy=0.

‘We obtain the four equilibrium points (0, 0), (0, 3), (4,0). and (2, 2).

To classify the equilibria, we compute the Jacobian

4—-2x —y —X
—y 6—4y —x ’

evaluate at each equilibrium point, and compute the eigenvalues.

At (0, 0), the Jacobian matrix is
4 0
0 6 )

The eigenvalues are 4 and 6, so the origin is a source.
At (0, 3). the Jacobian matrix is
1 0
-3 -6/

The eigenvalues are 1 and —6, so (0, 3) is a saddle.
At (4, 0), the Jacobian matrix is
—4 4
0o 2/

The eigenvalues are —4 and 2, so (4, 0) is a saddle.
Finally, at (2, 2) the Jacobian matrix 1s

(23)

The eigenvalues are —5 + /5. Both are negative, so (2, 2) is a sink.
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(b) The x-nullcline satisfies the equation 4x — x2

— xy = 0, which can be rewritten as
x(4—x—y)=0.

We get two lines, x = 0 (the y-axis) and y = 4 — x.
The y-nullcline satisfies the equation 6y — 2y> — xy = 0, which can be rewritten as

y(6 -2y —x) =0.

We get two lines, vy = 0 (the x-axis) and x + 2y = 6.
We compute the direction of the vector field by computing the sign of dy/dt on the x-
nullcline and the sign of dx /dt on the y-nullcline.

(¢) The phase portrait is
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25. (a) The equilibrium points are the solutions of

y2—x2-1=0

2xy =0,

—2x 2y
2y 2x |
0 2
2.0 )

Its characteristic polynomial is A% — 4, so its eigenvalues are A = 2. The equilibrium point is

a saddle.
0o -2
-2 0/

At (0, —1), the Jacobian is
Its characteristic polynomial is A> — 4, so its eigenvalues are A = +2. The equilibrium point is
a saddle.
(b) The x-nullcline is the hyperbola y> — x? = 1, and the y-nullclines are the x- and y-axes.
In the following figures, the nullclines are on the left and the phase portrait is on the right.

that 1s, (0, &=1).
The Jacobian matrix is

At (0, 1), the Jacobian is
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(¢) To see if the system is Hamiltonian, we compute

2 2 ..
Iy —x"—1) — %y and a(2xy) _ 2y
ax ay
Since these partials agree, the system is Hamiltonian.
The Hamiltonian 1s a function H (x, y) such that
dH  dx ) 2 oH dy
—:—:-‘—,'—]_ d _:__':_2-1_
ay dt . ! an ax dt o

We integrate the second equation with respect to x to see that
H(x,y)=—-x"y +¢().

where ¢ (v) represents the terms whose derivative with respect to x are zero. Using this expres-
sion for H (x, v) in the first equation, we obtain

24+’ () =y -2 - L
Hence. ¢’'(v) = y2 — 1, and we can take ¢(y) = %)-‘3 — ¥. The function

3

H(x,y) =%y + % -y
is a Hamiltonian function for this system.
(d) To see if the system is a gradient system, we compute
Ay —x* -1 d(2xy
O ! ) =2y and (2xy) = 2y.
ay : dJx )
Since these partials agree, the system is a gradient system.
We must now find a function G(x, v) such that
G  dx 2 aG dy
—_— = — =y —x" -1 d — =—=2xy.
ax a2 an dy  dt *

Integrating the second equation with respect to y, we obtain
G(x,y) = .1'_‘;2 + h(x),

where /1(x) represents the terms whose derivative with respect to v are zero.
Using this expression for G(x, ¥) in the first equation, we obtain

V4R () =yr—x?—1.
Hence, 7' (x) = —x2 — 1, and we can take /1(x) = —%x3 — x. The function
3

G(x,y) = .1'_\;2 — % —X

is the required function.
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27. To see if the system is Hamiltonian, we compute

a(—3x + 10y) -3 and o(—x + 3y) __3
ax ay

Since these partials agree, the system is Hamiltonian.
To find the Hamiltonian function, we use the fact that

oH dx
— = — = —3x 4+ 10v.
ay dt Iy

Integrating with respect to y gives
H(x,y) = =3xy + 5> + ¢ (),

where ¢ (x) represents the terms whose derivative with respect to y are zero. Differentiating this
expression for H (x, y) with respect to x gives
dy

3y +¢'(x) = —; =x — 3y

We choose ¢p(x) = %.1‘2 and obtain the Hamiltonian function
2

H(x,y) = =3xy+ 5y + %

We know that the solution curves of a Hamiltonian system remain on the level sets of the Hamil-
tonian function. Hence, solutions of this system satisfy the equation
x?
—3xy 45y + 5= h

for some constant /1. Multiplying through by 2 yields the equation
12— 6xy+10y2 =k

where & = 2/ is a constant.
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28. (a) To see if the system is Hamiltonian, we compute

d(ax + by) d(cx +dy)
—— =g and — ——— = 4.
ax ay
For these partials to agree, we must have ¢ = —d.
Assuming that d = —a, we want a function H (x, y) such that
EJH_dx_ by d BH_ d}-‘_ oy
dy  dt -t yoa ax  drt - oermar

We integrate the second equation with respect to x to see that
¢ 2
H(x,y)= ¥ taxy+ ¢(y),

where ¢ (v) represents the terms whose denivative with respect to x are zero.
Using this expression for H(x, ¥) in the first equation, we obtain

ax + ¢'(v) = ax + by.
In other words, ¢/(v) = by, and we can take ¢ (y) = bv2/2. The function

c b
H(x,y)= —Exz +axy+ ;}-‘2

is a Hamiltonian function for this system if d = —a.
(b) To see if the system is a gradient system, we compute

d(ax + by) d(ex + dy)
—_— =) and ———=c¢

dy Jx

The linear system is a gradient system if b = c.
Assuming that & = ¢, we want a function G(x, y) such that
aG  dx aG  dy

oy dr ooy md o =gy Torta
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