Exam2Review

n

. The simplest solution is an equilibrium solution, and the origin is an equilibrium point for this sys-

tem. Hence, the equilibrium solution (x(1), ¥(r)) = (0, 0) for all 7 is a solution.

. Note that dv /dr > 0 for all (x, v). Hence, there are no equilibrium points for this system.

.Letv = dy/dt. Then dv/dt = d*>v/dt?, and we obtain the system

dy B
dr
dv

E == 1.

v

. The equation for dx /dt gives y = 0. If y = 0, then sin(xy) = 0, so dy/dr = 0. Hence, every point

on the x-axis is an equilibrium point.

. First, we check to see if dx /dr = 2x — 2y? is satisfied. We compute

% = 6% and 2x —2y2 =27 _ 87 = 6O
Second, we check to see if dy/dt = —3y. We compute
dv
d_:.: = 6" and —3y=-3Q2e ) =—6e.

Since both equations are satisfied., (x(¢), v(t)) 1s a solution.

. From the equation for dx /dt, we know that x (1) = k1 e where ky is an arbitrary constant, and from

the equation for dy/dt, we have v(t) = ke

solution is (x(1), v(t)) = (k1e*, kpe™>").

, where &> is another arbitrary constant. The general

12. One step of Euler’s method is

2, D+ ArF2,1)=(2,1)4+0.5(3,2)
= (3.5, 2).

13. The point (1, 1) is on the line y = x. Along this line, the vector field for the system points toward

the origin. Therefore, the solution curve consists of the half-line y = x in the first quadrant. Note
that the point (0, 0) is not on this curve.
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15. True. First, we check the equation for dx /dr. We have

ﬁ = d(e_ﬁr) = —6€_m
dt dt ’
and
2x —2y2 =2(e %) — 2(2e )% = 270 8% = 6O,

Since that equation holds, we check the equation for dv/dr. We have

dy _ d(2e73") P
dt di ’

and
—3y=-3Qe ") = -6,

Since the equations for both dx /dt and dy/dt hold, the function (x (), v(¢)) = (e~ %,2¢ ) is a
solution of this system.

16. False. A solution to this system must consist of a pair (x(7), ¥(¢)) of functions.

20. True. For an autonomous system, the rates of change of solutions depend only on position, not on
time. Hence, if a function (x1(z), y1(¢)) satisfies an autonomous system, then the function given by

(x2(1), ¥2(1) = (1t + 1), 1t + 1)),
where T is some constant, satisfies the same system.

23. False. The point (0, 0) is an equilibrium point, so the Uniqueness Theorem guarantees that it is not
on the solution curve corresponding to (1, 0).

24. False. From the Uniqueness Theorem, we know that the solution curve with initial condition (1/2, 0)
is trapped by other solution curves that it cannot cross (or even touch). Hence, x(r) and v(r) must
remain bounded for all 7.

25. False. These solutions are different because they have different values at + = 0. However, they do
trace out the same curve in the phase plane.

26. True. The solution curve is in the second quadrant and tends toward the equilibrium point (0, 0) as
t — 00. It never touches (0, 0) by the Uniqueness Theorem.

27. False. The function y(r) decreases monotonically, but x(7) increases until it reaches its maximum at
x = —1. It decreases monotonically after that.

28. False. The graph of x(r) for this solution has exactly one local maximum and no other critical points.
The graph of v(7) has four critical points, two local minimums and two local maximums.
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31. X,y
4'|' (1)
3__
2 \ /\ \/\
1
— — t
) y(t)
32. x, ¥
14
y(t)
~— !
x(t)
33. x, ¥

1-
Y y(t) //
- t

34. x, ¥

x(t)
v(t)

N
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36. (a) For this system, we note that the equation for dy/dt depends only on y. In fact, this equation
is separable and linear, so we have a choice of techniques for finding the general solution. The

general solution for v is v(z) = —1 + kye’, where &k can be any constant.
Substituting y = —1 4+ k¢’ into the equation for dx /dt, we have
d -
d—? = (—=1+keH)x.

This equation is a homogeneous linear equation, and its general solution is
x(7) :E’ze_t‘"her,
where k> 1s any constant. The general solution for the system 1s therefore
(1), (1) = (kpe RS _1 4 Iyeh),

where k; and k> are constants which we can adjust to satisfy any given initial condition.

(b) Setting dy/dt = 0, we obtain y = —1. From dx /dr = xy = 0, we see that x = 0. Therefore,
this system has exactly one equilibrium point, (x, y) = (0, —1).
(e) If (x(0), ¥(0)) = (1, 0), then we must solve the simultaneous equations

f(gekl =1

—1+k =0.
Hence,k; = 1, and k» = 1/e. The solution to the initial-value problem is
(x(r), y(1)) = (e_le_"“:, —14 ef) = (eer_f_l, -1+ ef) .

(d) ¥y

-

(:
X\

1. The characteristic polynomial is (1 — A)(2 — A), so the eigenvalues are A = 1 and A = 2.
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2.

The characteristic polynomial is
(=) (1) — (D) =% -2,

so the eigenvalues are A = +4/2.

. The system has eigenvalues —2 and 3. One eigenvector y

associated with A = 3 1s (1, 0), and one eigenvector asso-
ciated with A = —2 is (0, 1). The general solution is

1 0
Y(1) = ke ke :
(7) 1€ (0)+ 2€ (l)

. By definition, the zero vector, Y1, is never an eigenvector. We can check the others by computing

AY. For example,

[ I e ]

AYg:A(

)-(2)

so Y» 1s an eigenvector (with eigenvalue A = 1). On the other hand,

1
AY3:( -)1
J

which 1s not a scalar multiple of Y3, so Y3 is not an eigenvector. Also, AY;s = 3Y4, so Y4 1s an
eigenvector (with eigenvalue A = 3). Since we know that Y> is an eigenvector and Ys = —2Y», Y5 is
also an eigenvector. The vectors Y, and Y4 are two linearly independent eigenvectors corresponding

to different eigenvalues. Therefore, Y¢ cannot be an eigenvector because it is neither a scalar multiple
of Y, nor Y.

. Note that & > 0 by assumption. The characteristic polynomial is

s> +bs+5,

so the eigenvalues are
_ =b=x Vb2 —20
= . )

-

If b > /20, the harmonic oscillator 1s overdamped. If » = +/20, the harmonic oscillator 1s critically
damped. If0 < b < +/20, the harmonic oscillator is underdamped, and if » = 0, the harmonic
oscillator is undamped.

5
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7. Every linear system has the origin as an equilibrium point, so the solution to the initial-value problem
is the equilibrium solution Y(¢) = (0, 0) for all 7.

9. Letting x(#) = 3 cos2r and v(r) = sin 2z, we have

dx _ d(3cos2t)

= - = —6sin2t = —6y
and )

d_v_d(str)_2 I_Z_

ar . dr ot e

Hence, Y(r) satisfies the linear system
dY 0 -6
— = Y
dt ( 2/3 0 )

10. Written in terms of coordinates, the system is dx /dt = y and dy/dt = 0. From the second equation,
we see that v(r) = k», where k> is an arbitrary constant. Then x () = k¢ + k1, where &; is another
arbitrary constant. In vector notation, the general solution 1s

kot + k1
Y(r) = ( ks ) .

y

[® 1]
L

L

k

Iy

A
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11. False. For example, the linear system

dY 3 0
— = Y
dt (0 0)

has a line of equilibria (the y-axis). Another example is the linear system

dyY 0 0

—_— = Y.

dt ( 0 0 )
Every point is an equilibrium point for this system.

12. True. If A 1s the matrix and A 1s the eigenvalue associated to Yp. then
A(kYo) = kAYy = kL Yy = A(kY)p).

Consequently, £Y is an eigenvector as long as £ # 0. (Note that &£ = 0 1s excluded because the zero
vector is never an eigenvector by definition.)

13. True. Linear systems have solutions that consist of just sine and cosine functions only when the
eigenvalues are purely imaginary (that is, of the form +iw). In this case, the sine and cosine terms
are of the form sin wr and cos wr. For the first coordinate of Y(r) to be part of a solution, we would
have to have @ = 2, but the second coordinate would force @ = 1. So this function cannot be the
solution of a linear system.

15. False. In the graph, the amount of time between consecutive crossings of the r-axis decreases as ¢
increases. Even though solutions of underdamped harmonic oscillators oscillate, the amount of time
between consecutive crossings of the 7-axis is constant.
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19. First, we compute the characteristic polynomials and eigenvalues for each matrix.
(i) The characteristic polynomial is A% + 1, and the eigenvalues are A = =i . Center.

(ii) The characteristic polynomial is A2 + 24 — 2. and the eigenvalues are A = 1 + +/3. Saddle.
(iii) The characteristic polynomial is A% + 3A + 1, and the eigenvalues are A = (—3 £ +/5)/2. Sink.
(iv) The characteristic polynomial is A + 1, and the eigenvalues are A = +i. Center.

(v) The characteristic polynomial is A> — A — 2, and the eigenvalues are A = —1 and A = 2. Saddle.
(vi) The characteristic polynomial is A7 — 34 + 1, and the eigenvalues are A = (3 +4/5)/2. Source.
(vii) The characteristic polynomial is A> 4+ 4A + 4. The eigenvalue A = —2 is a repeated eigenvalue.

Sink.
(viii) The characteristic polynomial is A> 4 2A + 3, and the eigenvalues are A = —1 + i+/2. Spiral
sink.
Given this information, we can match the matrices with the phase portraits.
(a) This portrait is a center. There are two possibilities, (1) and (iv). At (1, 0), the vector for (1) 1s
(1, —2), and the vector for (iv) is (—1, —2). This phase portrait corresponds to matrix (iv).
(b) This portrait is a sink with two lines of eigenvectors. The only possibility is matrix (iii).

(¢) This portrait is a saddle. The only possibilities are (ii) and (v). However, in (v), all vectors
on the y-axis are eigenvectors corresponding to the eigenvalue A = —1. Therefore, the phase
portrait cannot correspond to (v).

(d) This portrait is a sink with a single line of eigenvectors. The only possibility is matrix (vii).

20. (a) The trace T is a, and the determinant D is —3a. Therefore, the curve in the trace-determinant
plane is D = —3T.

D
544

36T

181

18 12 6 | '

Y

(b) The line D = —3T crosses the parabola T2 — 4D = 0 at two points—at (I, D) = (—12, 36)
ifa = —12and at (I, D) = (0,0) if ¢ = 0. Therefore, bifucations occur at a = —12 and
at a = 0. The portion of the line for which a < —12 corresponds to a positive determinant
and a negative trace such that 72 — 4D < 0. The corresponding phase portraits are real sinks.
If a = —12, we have a sink with repeated eigenvalues. If —12 < a < 0, we have complex
eigenvalues with negative real parts. Therefore, the phase portraits are spiral sinks. If a = 0,
we have a degenerate case where the y-axis is an entire line of equilibrium points. Finally, if

a > 0, the corresponding portion of the line is below the 7 -axis, and the phase portraits are
saddles.
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21. First, we compute the characteristic polynomials and eigenvalues for each matrix.

(i) The characteristic polynomial is A> — 31 — 4, and the eigenvalues are A = —1 and A = 4.
Saddle.

(i1) The characteristic polynomial is A2 — 71+ 10, and the eigenvalues are A = 2 and A = 5. Source.
(iii) The characteristic polynomial is A2 4+ 4 + 3, and the eigenvalues are A = —3 and A = —1.
Sink.
(iv) The characteristic polynomial is A% + 4, and the eigenvalues are A = +2i. Center.
(v) The characteristic polynomial is A% + 9, and the eigenvalues are A = +3i. Center.
(vi) The characteristic polynomial is A — 2\ + %, and the eigenvalues are A = 3/4 and A = 5/4.

Source.

(vii) The characteristic polynomial is A? 4+ 2.2 + 5.21. The eigenvalues are A = —1.1 + 2i. Spiral
sink.

(viii) The characteristic polynomial is A% + 0.2A + 4.01, and the eigenvalues are & = —0.1 + 2i.
Spiral sink.

Given this information, we can match the matrices with the x(7)- and v(r)-graphs.

(a) This solution approaches equilibrium without oscillating. Therefore, the system has at least one
negative real eigenvalue. Matrices (1) and (ii1) are the only matrices with a negative eigenvalue.
Since matrix (i) corresponds to a saddle, its only solutions that approach equilibrium are straight
line-solutions. However, this solution is not a straight-line solution because y(r)/x(¢) is not
constant. This solution must correspond to matrix (i11).

(b) Note that v(r) = —x(r) for all . Therefore, this solution corresponds to a straight-line solution
for a source or a saddle with eigenvector (1, —1). Direct computation shows that (1, —1) is
not an eigenvector for matrices (i) and (ii), and it is an eigenvector corresponding to eigenvalue
A = 3/4 for matrix (vi).

(e¢) This solution 1s periodic. Therefore, the corresponding matrix has purely imaginary eigenval-
ues. Matrices (iv) and (v) are the only matrices with purely imaginary eigenvalues. The solution
oscillates three times over any interval of length 2. Hence, the period of the solution is 2 /3.
Therefore, the eigenvalues must be £3i, and this solution corresponds to matrix (v).

(d) This solution oscillates as it approaches equilibrium. Therefore, the corresponding matrix has
complex eigenvalues with a negative real part. Matrices (vii) and (viii) are the only possibilities.
Since the real part of the eigenvalues for matrix (vii) is —1.1, its solutions decay at a rate of
e~ 11 Similarly, the real part of the eigenvalues for matrix (viii) is —0.1, so its solutions decay
at a rate of e 1. The rate of decay of the solution graphed is ¢ !7. Consequently, these
graphs correspond to matrix (viii).
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23. The characteristic polynomial is
s2 4 55 16,

so the eigenvalues are s = —2 and s = —3. Hence, the general solution is

v(t) =kje ™ +kye™

and we have
V(1) = —2k1e™% — 3kpe ™.

From the initial conditions, we obtain the simultaneous equations
ki+k=0
-2k — 3k =2,
Solving for &7 and 47 yields &1 = 2 and &> = —2. Hence, the solution to our initial-value problem is

y(t) =22 — 273,

24, The characteristic polynomial is
52 4+ 25 45,
so the eigenvalues are s = —1 4 2i. Hence, the general solution 1s
v(t) = k1e" cos2t + kpe sin2r.
From the initial condition y(0) = 3, we see that &1 = 3. Differentiating
y(t) = 3¢~ cos 2t + koe ' sin 2t

and evaluating y'(z) at r = 0 yields y'(0) = —3 + 2k». Since ¥'(0) = —1, we have &> = 1. Hence,
the solution to our initial-value problem 1s

y(t) = 3¢ cos 2t + e~ sin 2t.

25. The characteristic polynomial is
s2 425 4+ 1,
so s = —1 1s a repeated eigenvalue. Hence, the general solution is

V() = ket +kate.

From the initial condition y(0) = 1, we see that £; = 1. Differentiating
y(t) = e ! +lore?

and evaluating v'(r) at t = 0 yields y'(0) = —1 + k». Since y'(0) = 1, we have k» = 2. Hence, the
solution to our initial-value problem is

v(t) = et 4 2te ",
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26. The characteristic polynomial is s*+2, so the eigenvalues are s = =i V2. Hence, the general solution
is

v(t) = kq cos V2t kysin/21.

From the initial condition y(0) = 3, we see that &y = 3. Differentiating y(#) and evaluating
atr = 0, we get ¥v'(0) = V2k>. Since v(0) = —+/2, we have k» = —1. The solution to our
initial-value problem is

(1) = 3 cos V2t —sinv/21.
27. (a) The characteristic polynomial is
1-(=1-2-3=1>-14

so the eigenvalues are A; = 2 and A» = —2. The equilibrium point at the origin is a saddle.
The eigenvectors for A1 = 2 satisfy the equations

xX+3yv=2
xX—y=2y.

Consequently, the eigenvectors (x, v) for this eigenvalue satisfy x = 3v. The eigenvector (3, 1)
is one such point.
The eigenvectors for Ap = —2 satisfy the equations

x+3y=—-2x
X —y=-2y.
Consequently, the eigenvectors (x, y) for this eigenvalue satisfy v = —x. The eigenvector

(1, —1) is one such point.
Hence, the general solution of the system is

Y1) = ke ( ? )+k2e—2‘( _i )

(b) ¥y
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(e) To solve the initial-value problem, we solve for &7 and k> in the equation

(3)rea2)ox(2)

This vector equation 1s equivalent to the two scalar equations

3y +hy =2
ki — k=3,

soky = 1/4 and k» = —11/4. The solution to the initial-value problem is

3 1
Y“}:%em( 1 )_%e ﬂ( -1 )
(d) x,y

By /
.

T t
A !
A
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28. (a)

The characteristic polynomial is
A—2)B=2)—-2=22-TA+10=RA=5R-2),

so the eigenvalues are A; = 5 and A» = 2. The equilibrium point at the origin is a source.
The eigenvectors for A; = 5 satisfy the equations

4x + 2y =5x
X+ 3y =>5y.
Consequently, the eigenvectors (x, y) for this eigenvalue satisfy x = 2y. The eigenvector (2, 1)

is one such point.
The eigenvectors for A» = 2 satisfy the equations

4dx +2y=2x
X+ 3y =2y.
Consequently, the eigenvectors (x, y) for this eigenvalue satisfy y = —x. The eigenvector

(1, —1) 1s one such point.
Hence, the general solution is

2 1
Y(.r):hes‘( : )4—.'%262’( | )
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(b)

(e) To solve the initial-value problem, we solve for k; and 4> in the equation

(1)) ()

This vector equation is equivalent to the two scalar equations
2k +k =0
ki —k =1,

sok; = 1/3 and k = —2/3. The solution of the initial-value problem is

2 1
Y(r):%eﬂ( ) )—%em( 1 )

(d) X,y
3__

y(t) x(t)
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30. (a)

(b)

The characteristic polynomial is
(=3 -1 —A)+12=27+21+9,

so the eigenvalues are A = —1 + 2+/2i. The equilibrium point at the origin is a spiral sink.
The eigenvectors (x, ¥) corresponding to A = —1 + 24/2 are solutions of the equations

“3x+6y=(—14+242i)x
—2x +y=(=14220)y.

These equations are equivalent to the equation 3y = (1 4+ +/27)x. Consequently, (3, 1 + +/21)
is one eigenvector. Linearly independent solutions are given by the real and imaginary parts of

i 3
Y. () = (—142/2i)t )
0)=e 1+ +/2i

Hence, the general solution is

3 242 3sin24/2
Y(0) = kpe! cos f; et sin 1/—: |
cos22t — /2sin2+/21¢ V2 cos2v/21 4+ sin24/2 ¢

y

121

_

—124
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(¢) To satisfy the initial condition, we solve

(7)o (2)o+( )

which is equivalent to the two scalar equations

3k =-T7
ki +2k=17.
We get k1 = —7/3 and k» = 14+/2/3. The solution of the initial-value problem is

cos24/21 — /2sin24/2 ¢ 3 V2cos2/2t +sin2/2 ¢

i —Tcos2y/21 4 1442 sin24/21¢
= .
Tcos2/21 +74/2 sin2/21

) .
Y(I):_ge_,( 3cos2y/21 )+ 14\/564( 3sin24/21 )

(d) X,y
12-'— ()
|/ T —

3 1t
(1) \4\/5

—12
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31. (a) The characteristic polynomial is
(=3—M(=1-0)+1=(Rr+2)°

so A = —2 is a repeated eigenvalue. The equilibrium point at the origin is a sink.
To find the general solution, we start with an arbitrary initial condition (xp, yp), and we

calculate
-1 1 Yo \ _ [ Yo—xo
-1 1 vo /) \do—x0 )

‘We obtain the general solution

Y(i)=e % ( 1o )+e‘e_2" ( Yoo )
Yo Yo — Ao

(b)
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(¢) The solution that satisfies the initial condition (xp, vo) = (=3, 1) is

-3 A At —3
Yi)=e % +re —e ¥ )
1 4 4 + 1

(d) X,y

1 oy®

-

x(1)
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32. (a) The characteristic polynomial is

O -3 - +2=2243112,

so the eigenvalues are A.; = —2 and Ay = —1. The equilibrium point at the origin 1s a sink.

The eigenvectors for A; = —2 satisfy the equations

y=—2x
—2x —3y=-2y
Consequently, the eigenvectors (x, v) for this eigenvalue satisfy v = —2x
(1, —2) is one such point.
The eigenvectors for A» = —1 satisfy the equations
y=—x
—2x =3y =—y.
Consequently. the eigenvectors (x, v) for this eigenvalue satisfy y = —x

(1, —1) is one such point.
Hence, the general solution of the system is

1 1
Y1) :kle_zt( s ) +.fc2e—‘( B )

(b)

. The eigenvector

. The eigenvector
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