
MATH 304 Ordinary Differential Equations

Exam #2 SOLUTIONS November 20, 2014 Prof. G. Roberts

1. Below are three phase portraits for three different linear systems Ẏ = AY. Match each
diagram with its corresponding matrix A. Explain briefly the rationale for each choice. There
is exactly one matrix for each figure. (18 pts.)

(a) (b) (c)

(i)

[
−2 1

0 −1

]
(iii)

[
−1 2
−1 1

]
(v)

[
1 1
−1 1

]

(ii)

[
−1 1

0 −2

]
(iv)

[
1 2
−1 −1

]
(vi)

[
1 −1
1 1

]

(a) (vi) This phase portrait corresponds to a spiral source. The matrices for (v) and (vi)

each have trace T = 2 and determinant D = 2. Thus, D > T 2/4 and T > 0, so each matrix is
a spiral source. Checking the direction field, we notice that the matrix for (v) applied to the
vector [1, 0] gives [1,−1], which does not agree with the direction field at the point (1, 0). On
the other hand, (vi) applied to the vector [1, 0] gives [1, 1], which does match the direction
field at (1, 0).

(b) (i) This phase portrait corresponds to a real sink with two straight-line solutions, one
along the x-axis (vector [1, 0]) and one along the line y = x (vector [1, 1]). The matrices for (i)
and (ii) each have eigenvalues λ1 = −1, λ2 = −2 (they are triangular so the eigenvalues are
sitting on the diagonal), and thus correspond to real sinks. However, the matrix for (ii) applied
to the vector [1, 1] gives [0,−2], which means it is not an eigenvector. Meanwhile, (i) applied
to the vector [1, 1] gives [−1,−1], which means that [1, 1] is an eigenvector corresponding to
the eigenvalue λ1 = −1 (the slower eigenvalue). It follows that solutions for (i) will come in
tangent to the line y = x, as desired.

(c) (iv) This phase portrait corresponds to a center. The matrices for (iii) and (iv) each
have trace T = 0 and determinant D = 1, which corresponds to a center. Checking the
direction field, we notice that the matrix for (iii) applied to the vector [1, 0] gives [−1,−1],
which does not agree with the direction field at the point (1, 0). On the other hand, (iv)
applied to the vector [1, 0] gives [1,−1], which does match the direction field at (1, 0).



2. ODE Potpourrii: (16 pts.)

(a) Suppose that a harmonic oscillator has a mass m = 2 and a spring constant k = 5. For
what value of the damping coefficient b is the oscillator critically damped?

Answer: b =
√

40 = 2
√

10. The ODE for the oscillator is 2ÿ+bẏ+5y = 0, which means
the characteristic polynomial is p(λ) = 2λ2 + bλ + 5. For the oscillator to be critically
damped, we want p to have repeated roots. This means that the discriminant of the
quadratic must vanish, i.e., b2− 4 · 2 · 5 = 0, or b2 = 40. We take the positive square root
because the damping coefficient is assumed to be positive.

(b) True or False: An overdamped harmonic oscillator always returns to the equilibrium
position without crossing the rest position. Explain briefly.

Answer: False. This was a tricky one. Note that the rest position is y = 0, which
is different than the equilibrium point y = 0, v = 0. An overdamped oscillator always
heads toward the equilibrium point without repeated oscillation. However, if the initial
velocity is large enough and in the opposite direction of the initial position, then the
mass can move past the rest position (y flips signs) before heading toward equilibrium.
We discussed this on an exercise Melissa asked about during the exam review session.

Here’s a more detailed explanation. For an overdamped oscillator, there are two real,
negative eigenvalues λ2 < λ1 < 0. Since the top row of the matrix of the corresponding
linear system is [0 1], the eigenvectors can always be chosen as v1 = [1 λ1] and v2 =
[1 λ2]. Next, recall that solutions for a real sink come in tangent to the slower eigen-
direction, which in our setup is the vector v1. In the fourth quadrant of the yv-plane,
the vector v1 will always be above the vector v2. Thus, any solution that starts in
the fourth quadrant below the v2 straight-line solution, must cross into the third and
second quadrants before heading toward the origin. This means that y(0) > 0, but that
y(t) < 0 as the solution approaches the equilibrium point. Consequently, the mass passes
through the rest position y = 0 (just once) before returning to equilibrium. The figure
below shows an overdamped oscillator with λ1 = −1, λ2 = −3 and two solution curves
(in red) where y(t) changes sign as it heads toward (0, 0).



(c) Find the natural period of the oscillations for solutions to the linear system

dY

dt
=

[
2 1
−5 4

]
Y.

Answer: π. To find the natural period, we first compute the eigenvalues. The trace
is T = 6 and the determinant is D = 13, so the characteristic polynomial is p(λ) =
λ2− 6λ+ 13. The roots are (6±

√
36− 52)/2 = 3± 2 i. The coefficient of the imaginary

part controls the natural period of the solution, so the period is simply 2π/2 = π.

(d) Find one solution to the system

dx

dt
= (y + 3)(ex

2+5 + tan2 y)

dy

dt
= x(y2014 + 4).

Answer: x(t) = 0, y(t) = −3 is an equilibrium point, and thus a simple solution to the
ODE.



3. The phase portrait below shows two solution curves to a given system of differential equations.
Solution curve (a) begins at the point (x(0), y(0)) = (2.2,−3), and solution curve (b) starts
at the point (x(0), y(0)) = (1.95,−3). (14 pts.)

(a) Sketch the x(t)- and y(t)-graphs for solution curve (a) on the same set of axes. Be sure
to label each graph.

(b) Sketch the x(t)- and y(t)-graphs for solution curve (b) on the same set of axes. Be sure
to label each graph.

Figure 1: The x(t)- and y(t)-graphs for solution curve (a) (left) and (b) (right). Note that in each
figure, the minimum value of x occurs when y = 0.



4. Consider the linear system
dY

dt
= AY with

A =

[
4 3
2 −1

]
.

(a) Find the eigenvalues and eigenvectors of A.

(b) Sketch the phase portrait for this system, including several solution curves.

(c) Find the general solution of the system.

(d) On the same set of axes, sketch the x(t)- and y(t)-graphs for the solution with initial
condition Y0 = (−2, 4). Be sure to label each graph.

(18 pts.)

Answer: The trace of the matrix is T = 3 and the determinant is D = −10. This gives a
characteristic polynomial of

p(λ) = λ2 − 3λ− 10 = (λ− 5)(λ+ 2),

so the eigenvalues are λ1 = −2, λ2 = 5 and the equilibrium point is a saddle. To find the
eigenvectors, we have

A− λ1I =

[
6 3
2 1

]
=⇒ v1 =

[
1
−2

]
,

and

A− λ2I =

[
−1 3

2 −6

]
=⇒ v2 =

[
3
1

]
.

It follows that the general solution is

Y(t) = c1e
−2t

[
1
−2

]
+ c2e

5t

[
3
1

]
,

where c1 and c2 are arbitrary constants.

Figure 2: The phase portrait for the given linear system (left) and the x(t)- and y(t)-graphs (right)
for the solution starting at the point (−2, 4) = −2v1 (a straight-line solution heading to the origin).



5. Consider the following harmonic oscillator:

ÿ + 2ẏ + 10y = 0.

(a) Find the general solution, that is, find a formula for y(t), of this second-order differential
equation. (5 pts.)

Answer: The characteristic polynomial is p(λ) = λ2 + 2λ+ 10, which has roots

λ =
−2±

√
4− 40

2
= −1± 3 i.

Since the real part of the eigenvalues is a = −1 and the imaginary part is b = 3, the
general solution is

y(t) = c1e
−t cos(3t) + c2e

−t sin(3t).

(b) Find the particular solution that satisfies the initial conditions y(0) = 4, v(0) = 0. (5 pts.)

Answer: Using our general solution from part (a), we take the derivative and find that

y′(t) = v(t) = c1(−e−t cos(3t)− 3e−t sin(3t)) + c2(−e−t sin(3t) + 3e−t cos(3t)).

Then, y(0) = 4 implies that 4 = c1 + 0, so c1 = 4. Next, v(0) = 0 implies that
0 = −c1 + 3c2, or 4 = 3c2, so c2 = 4/3. Thus, the particular solution is

y(t) = 4e−t cos(3t) +
4

3
e−t sin(3t).

(c) Carefully describe the motion of the mass for the initial conditions y(0) = 4, v(0) = 0.
Be sure to include an interpretation of the initial conditions and a description of how
the mass behaves as it approaches the rest position. (How often, if at all, does the mass
cross the rest position? How fast does it approach equilibrium?) (4 pts.)

Answer: The mass begins four units from the rest position with no initial velocity (no
movement). It will oscillate about the rest position repeatedly but with smaller and
smaller amplitudes. The maximum and minimum distances from y = 0 are governed by
the envelope e−t. Since the natural period is 2π/3, the mass crosses the rest position
twice every 2π/3 seconds. It approaches the equilibrium exponentially at a rate of e−t.

6. Consider the one-parameter family of linear systems given by

dY

dt
=

[
2a a− 1
a+ 1 0

]
Y.

(a) Give the trace T and determinant D of this matrix, and find a relationship between T
and D.

Answer: The trace is T = 2a and the determinant is D = −(a + 1)(a − 1) = 1 − a2.
Solving the first equation for a gives a = T/2. Then, substituting this into the second
equation, we have D = 1− (T/2)2 = 1− T 2/4.

(b) Sketch the path traced out by this family of linear systems in the trace-determinant plane
as a varies.

Answer: The function D = 1 − T 2/4 is a parabola opening downwards with a vertex
at (T = 0, D = 1) (see Figure on next page).



Figure 3: The graph of the curve D = 1 − T 2/4 (blue curve) in the trace-determinant plane. The
red curve is the repeated eigenvalue parabola D = T 2/4.

(c) Find all possible values of a where bifurcations occur. Describe the type of equilibrium
point before, at, and after each bifurcation.

(20 pts.)

Answer: Bifurcations occur when the curve crosses the line D = 0, the parabola D = T 2/4,
and the top half of the D-axis, T = 0, D > 0. First, we have that D = 0 iff 1 − a2 = 0 or
a = ±1. Next, the parabolas D = T 2/4 and D = 1− T 2/4 intersect when T 2/4 = 1− T 2/4,
or T 2 = 2. Since T = 2a, we get 4a2 = 2 or a = ±1/

√
2. Finally, we have T = 0 when a = 0.

Thus, there are five bifurcations at a = −1,−1/
√

2, 0, 1/
√

2, 1 (see Figure). Moving around
the parabola from a < −1 to a > 1, we have the following types of equilibria at the origin:

• For a < −1, we have a saddle.

• At a = −1, there is a line of equilibrium points on y = −x. All other solutions move
toward this line parallel to the x-axis.

• For −1 < a < −1/
√

2, we have a real sink.

• At a = −1/
√

2, we have a repeated sink.

• For −1/
√

2 < a < 0, we have a spiral sink.

• At a = 0, we have a center.

• For 0 < a < 1/
√

2, we have a spiral source.

• At a = 1/
√

2, we have a repeated source.

• For 1/
√

2 < a < 1, we have a real source.

• At a = 1, there is a line of equilibrium points on the y-axis. All other solutions move
away from this line parallel to the line y = x.

• For a > 1, we have a saddle.


