Examl-Review

1. The simplest differential equation with v(z) = 2t as a solution is dy/dr = 2. The 1nitial condition
v(0) = 3 specifies the desired solution.

2. By guessing or separating variables, we know that the general solution is y(r) = vge>, where y(0) =
Vo is the initial condition.

4. Since the question only asks for one solution, look for the simplest first. Note that y(z) = 0 for all ¢
is an equilibrium solution. There are other equilibrium solutions as well.

5. The nght-hand side is zero for all ¢ only if y = —1. Consequently, the function y(r) = —1 for all ¢
is the only equilibrium solution.

7. The equations dy/dt = y and dv/dt = 0 are first-order, autonomous, separable, linear, and homo-
geneous.

9. The graph of f(y) must cross the y-axis from negative to positive at y = 0. For example, the graph
of the function f(v) = v produces this phase line.

f

11. True. We have dy/dt = e, which agrees with |v(r)].

17. True. Note that the function y(r) = 3 for all 7 is an equilibrium solution for the equation. The
Uniqueness Theorem says that graphs of different solutions cannot touch. Hence, a solution with
v(0) = 3 must have v(r) > 3 forallr.

19. False. By the Uniqueness Theorem, graphs of different solutions cannot touch. Hence, if one solution
vi(t) — 00 as t increases, any solution y»(r) with y2(0) > y1(0) satisfies v2(r) > y1(¢) for all .
Therefore, y2(#) — 00 as t increases.

20. False. The general solution of this differential equation has the form v(r) = ke’ 4+ ae™", where & is
any constant and « 1s a particular constant (in fact, @ = —1/2). Choosing & = 0, we obtain a solution
that tends to 0 as t — 00.
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21. (a) The equation is autonomous, separable, and linear and nonhomogeneous.
(b) The general solution to the associated homogeneous equation is v;(r) = ke~ . For a particular
solution of the nonhomogeneous equation, we guess a solution of the form y,(7) = a. Then

dy
d—f + 2y, = 2a.

Consequently, we must have 2a = 3 for y,(7) to be a solution. Hence, @ = 3/2, and the general

solution to the nonhomogeneous equation is

y(t) =3 +ke .

23. (a) The equation is linear and nonhomogeneous. (It is nonautonomous as well.)

(b) The general solution of the associated homogeneous equation is v;(t) = ke . For a particular
solution of the nonhomogeneous equation, we guess a solution of the form y,(7) = ae’. Then

dv
% —3yp = Tae™ — 3ae’ = dae™.

Consequently, we must have 4o = 1 for y,(7) to be a solution. Hence, @ = 1/4, and the general
solution to the nonhomogeneous equation is

v(r) = kedt 1 %e?f.

25. (a) This equation is linear and nonhomogeneous.

(b) To find the general solution, we first note that v4 (1) = ket is the general solution of the
associated homogeneous equation.
To get a particular solution of the nonhomogeneous equation, we guess

vp(t) = aecos 3¢t + B sin3r.

Substituting this guess into the nonhomogeneous equation gives

—— + 35y, = —3asin3t + 3B cos 3t + Sa cos 3t + 5B sin 3¢
= (5a + 3B)cos 3t + (58 — 3e) sin 3t.

In order for yp(7) to be a solution, we must solve the simultaneous equations

S +38=0
58 —3a=1.
From these equations, we get @ = —3/34 and 8 = 5/34. Hence, the general solution is

y(t) = ke — % cos 3t + % sin 3t.
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26. (a) This equation is linear and nonhomogeneous.

(b) We rewrite the equation in the form

dy 2y

dt 14+

and note that the integrating factor is

1

1) = of 24D dr _ ,—2In(1+0) _ _
p(t) =e e _{1 T
Multiplying both sides of the differential equation by p(r), we obtain

1 dy 2y 1
(14+02dt (1403 (A+0?

Applying the Product Rule to the left-hand side, we see that this equation is the same as

rf( ¥ )_ t
d\(1+02) A+

Integrating both sides with respect to ¢ and using the substitution # = 1 + ¢ on the right-hand
side, we obtain
y _
(1+02 14+

where k& can be any real number. The general solution is

+In|l 4] +4,

yO) =1 +0)+ 1+l + 1]+ k(1 +1)°.
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29. (a) This equation is linear and nonhomogeneous.
(b) First we note that the general solution of the associated homogeneous equation is ke " .
Next we use the technique suggested in Exercise 19 of Section 1.8. We could find particular
solutions of the two nonhomogeneous equations

dy
— = 3y4+e X and — =3y 412
dt : dt Y+
separately and add the results to obtain a particular solution for the original equation. How-
ever, these two steps can be combined by making a more complicated guess for the particular
solution.
We guess y,(1) = ae™ 4+ br? + ¢t + d, and we have

dy

dv
=2 4 3y, = —2ae7 4 2bt + ¢+ 3ae ™ + 357 + 3cr +d
= ae 2 4 3b1* + (2b + 3¢)t + (c + 3d).
Hence, for y,(7) to be a solution we must havea = 1,0 = % c= —%, and d = % Therefore,

-2t

a particular solution is y, (1) = e =~ + %3‘2 — %r + % and the general solution is

N T3t 2, 12 2 2
() =ke ™ +e 7 + 3t 5 + 77-
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31. (a) This equation is linear and nonhomogeneous. (It is nonautonomous as well.)

(b) The general solution of the associated homogeneous equaion is v;(t) = ke*'. To find a partic-

ular solution of the nonhomogeneous equation, we guess y,(7) = a cos4sr + sin4s. Then

dyp

r 2yp = —4dasindr +4f cos4t — 2(acosdr 4 B sindr)

= (—2a +4B)cosdt + (—4a — 2B) sin4r.
Consequently, we must have
(—2a +4p8)cosdr + (—4a — 28) sindt = cos 4t

for yp(7) to be a solution. We must solve

—2a+48=1
—4a —28=0.
Hence,a = —1/10 and B = 1/5, and the general solution of the nonhomogeneous equation is

y(t) = ke — % cosdr + % sin4z.

To find the solution of the given initial-value problem. we evaluate the general solution at
t = 0 and obtain
¥(0) =k — 3.

Since the initial condition is y(0) = 1, we see that X = 11/10. The desired solution is

W) = W2t 1 1
y(t) = 15€ 75 cos4r + = sindz.
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33. (a) The equation is separable because

dv )
— = (2 4+ Dy
= (= + 1)y

(b) Separating variables and integrating, we have

[}__3 dy = j(e‘Q + 1)d:

y—2 el

S o3ttt

2
2= 2 — 2 +k.
¥ 3! +

Using the imitial condition y(0) = —1/2, we get that £ = 4. Therefore,

1

2

Vo= —2 .
42— 2

Taking the square root of both sides yields
+1

> .
1#4—2?—;3‘3

In this case, we take the negative square root because y(0) = —1/2. The solution to the initial-
value problem is

.‘..‘:

-1
> .
1!4—2.’— §f3

34. The general solution to the associated homogeneous equation is y;(f) = ke >'. For a particular
solution of the nonhomogeneous equation, we guess y, (1) = are™ rather than e because ae ™'
is a solution of the homogeneous equation. Then

y() =

5 t

—=£ Syp =ae”

' _ Sate 1 Sate™
dt

= a'e_sr.

Consequently, we must have @ = 3 for y,(¢) to be a solution. Hence, the general solution to the
nonhomogeneous equation is
y(r) = ke ™ + 3¢,

Note that v(0) = £, so the solution to the initial-value problem is

y(1) = 2> + 3re™ = (3t — 2)e .
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35. (a) This equation is linear and nonhomogeneous. (It is nonautonomous as well.)

(b) We rewrite the equation as

dy 2
— — 2ty = 3te’
dt :
and note that the integrating factor is
wu(r) = ol —2tdt _ e—r:’_
Multiplying both sides by (), we obtain
2 dy 2
2] —f
e — —2te y=3t
dt

Applying the Product Rule to the left-hand side, we see that this equation is the same as

% (e_fz _\,-') = 3z,

2

and integrating both sides with respect to r, we obtain e y = %rz + k, where £ is an arbitrary

constant. The general solution is
2
y(t) = (%12 +R’) et

To find the solution that satisfies the initial condition ¥(0) = 1, we evaluate the general
solution at + = 0 and obtain £ = 1. The desired solution is

v(t) = (%12 + 1) e
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37. (a) This equation is separable.
(b) We separate variables and integrate to obtain

1
jjﬂ:f@+er
.

1
—— =+ +k
}.-

-1
V= —
. 2+3+k

To find the solution of the initial-value problem, we evaluate the general solution atr = 1

and obtain
(1) = —.
YO =77
Since the initial condition is v(1) = —1, we see that £ = —1. The solution to the initial-value
problem is
1
YO =177
39. (a) The differential equation is separable.
(b) We can write the equation in the form
dv t2

dr y(3+1)

2
f\:dv:f dt
T S |

}'2 1 3
?:Elﬂlf +1|+C.,

and separate variables to get

where ¢ 1s a constant. Hence.
2
_\,-'2 = glnls‘3 + 1] + 2e.

The imitial condition y(0) = —2 implies

2
(—2) = E1n|1| + 2e.

Thus, ¢ = 2, and

v(r) = —\K%lnle‘3 + 1|+ 4.

We choose the negative square root because v(0) is negative.
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40. (a) (b)
¥y ¥
30T 30—
[ ]
204 20—+
10+ 10—+
ol - P s S S
| | | — |
0.5 1 1.5 2 0.5
(c) Note that
dy
— =(y -1~
= (> )

Separating variables and integrating, we get

1
f(}-*— e @ :.[ldr
1

= k.
=t
From the intial condition. we see that ¥ = —1. and we have
1
=r—1.
11—y !
Solving for v yields
r—2
y(t) = T
which blows up as t — 1 from below.
41. (a) 5 (b) y
1+ 1+
t
14
. 14
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42. (a) (b) ,
y=4 sink 4+
=1 node
y 1=+
y=-2 source t
. -2+
y=—4 sink
44

(e) ¥y

=4

46. (a) Note that there 1s an equilibrium solution of the form y = —1/2.
Separating variables and integrating, we obtain

] 1
dy= | ~d
_[2)-'+1 ) fr !

T2y +1|=Injr|+c

2y +1=MWm>)+c

12y + 1| = e17?,

where ¢; = ¢°. We can eliminate the absolute value signs by allowing the constant to be either
positive or negative. In other words, 2y + 1 = k;2, where k; = +¢;. Hence

s 2 1
"(r) =kt* — T

where k = &y /2.

(b) As t approaches zero all the solutions approach —1/2. In fact, v(0) = —1/2 for every value
of k.

(e) This example does not violate the Uniqueness Theorem because the differential equation is not
defined at + = 0. So functions y(#) can only be said to be solutions for r # 0.
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47. (a) Using Euler’s method, we obtain the (b)
values vp = 0, v1 = 1.5, » =
1.875, y3 = 1.617, and y4 = 1.810
(rounded to three decimal places). y=+/3 sink
y y= ~J3 source
Lo J IR
2 R .

(¢) The phase line tells us that the solution with initial condition y(0) = 0 must be increasing.
Moreover, its graph is below and asymptotic to the line y = 4/3 as t — 00. The oscillations
obtained using Euler’s method come from numerical error.

48. (a) If we let k£ denote the proportionality constant in Newton's law of cooling, the initial-value prob-
lem satisfied by the temperature T of the soup is

dT
— =Kk(T —70), T(0)=150.
dt
(b) We can solve the initial-value problem in part (a) using the fact that this equation i1s a nonho-
mogeneous linear equation. The function 7 (r) = 70 for all 7 is clearly an equilibrium solution

to the equation. Therefore, the Extended Linearity Principle tells us that the general solution 1s
T(r) =70 + ce™,

where c 1s a constant determined by the initial condition. Since 7(0) = 150, we have ¢ = 80.
To determine &, we use the fact that 7(1) = 140. We get

140 = 70 + 80£F
70 = 80&F

7

F ="

We conclude that £ = In(7/8).
In order to find 7 so that the temperature is 100°, we solve

100 = 70 + 80e™7/®"

for t. We get In(3/8) = In(7/8)¢, which yields + = In(3/8)/1n(7/8) ~ 7.3 minutes.
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49.

50.

(a) Note that the slopes are constant along vertical lines—lines along which ¢ is constant, so the
right-hand side of the corresponding equation depends only on 7. The only choices are equa-
tions (1) and (iv). Because the slopes are negative for r > 1 and positive for r < 1, this slope
field corresponds to equation (iv).

(b) This slope field has an equilibrium solution corresponding to the line y = 1, as does equations
(11), (v), (vi1), and (vi11). Equations (11), (v), and (vii1) are autonomous, and this slope field 1s not
constant along horizontal lines. Consequently, it corresponds to equation (vii).

(¢) This slope field is constant along horizontal lines, so it corresponds to an autonomous equation.
The autonomous equations are (ii), (v), and (vii1). This field does not correspond to equation (v)
because it has the equilibrium solution y = —1. The slopes are negative between v = —1 and
v = 1. Consequently, this field corresponds to equation (vii1).

(d) This slope field depends both on y and on 7, so it can only correspond to equations (i11), (v1),
or (vii). It does not correspond to (vii) because it does not have an equilibrium solution at
v = 1. Also, the slopes are positive if y > 0. Therefore, it must correspond to equation (vi).

(a) Let 7 be time measured in years with 7 = 0 corresponding to the time of the first deposit, and let
M(1) be Beth’s balance at time 7. The 52 weekly deposits of $20 are approximately the same as
a continuous yearly rate of $1,040. Therefore, the initial-value problem that models the growth
n savings is

% = 0.011M 4 1,040, M(0) = 400.

(b) The differential equation is both linear and separable, so we can solve the initial-value problem
by separating variables, using an integrating factor, or using the Extended Linearity Principle.
We use the Extended Linearity Principle.

The general solution of the associated homogeneous equation is £¢%°11Y. We obtain one

particular solution of the nonhomogeneous equation by determining its equilibrium solution.
The equilibrium point is M = —1,040/0.011 ~ —94,545. Therefore, the general solution of

the nonhomogeneous equation is
M(r) = ke®OM" — 94 545.

Since M(0) = 400, we have £ = 94,945, and after four years, Beth balance 1s M(4) =~
94,9450044 _ 94 545 ~ $4,671.
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51. (a) (b) As t — 00, v(r) — b for every solution y(7).

(¢) The equation is separable and linear. Hence, you can find the general
solution by separating variables or by either of the methods for solving

y=b & sink linear equations (undetermined coefficients or integrating factors).

(d) The associated homogeneous equation is dy/dt = —(1/a)v, and its
1 general solution is ke /4. One particular solution of the nonhomoge-
neous equation is the equilibrium solution y(¢) = & for all . Therefore,
the general solution of the nonhomogeneous equation is

v(t) = ke 1 1 p.

(e) The authors love all the methods, just in different ways and for different reasons.

(f) Since a > 0,¢~*/® > 0 ast —» co. Hence, v(t) — b ast — 00 independent of k.

52. (a) The equation is separable. Separating variables and integrating, we obtain

fy—%fy:f_zsds

_1"1_1 = _lrz + C,
where c 1s a constant of integration. Multiplying both sides by —1 and inverting yields

1

W) = ——
Y =

where & can be any constant. In addition, the equilibrium solution y(7) = 0 for all ¢ is a solu-
tion.

(b) If v(—1) = vp, we have

1
-':‘—]_:
Yo = y(—1) %
S0 1
k=— -1
Yo

Aslong as & = 0, the denominator is positive for all 7, and the solution is bounded for all 7.
Hence, for 0 < vp < 1, the solution is bounded for all . (Note that yo = 0 corresponds to the
equilibrium solution.) All other solutions escape to 400 in finite time.

Page 13




