ODE Math 304-01, Fall 2004

Computer Project #4

Solving the Two-Body Problem
DUE DATE: Tuesday Dec. 7, 5:00 pm.

The goal of this project is to “solve” the classical two-body problem from celestial mechanics.
Although explicit analytic solutions are impossible to obtain, there are powerful geometric and qual-
itative techniques available which make the problem tractable. You will use many of the methods
developed for nonlinear systems thus far, specifically ideas from Hamiltonian systems theory such as
integrals of motion. Many of the arguments rely heavily on identities and concepts from multivariable
calculus.

For this project you may use MAPLE or the ODE software by John Polking available at
http://math.rice.edu/~dfield/dfpp.html. You may have to adjust your printing settings to
print from the web using the Polking software. (See instructions on his website.) The commands
for MAPLE include phaseportrait and polarplot. Be sure to load the ODE package by typing

with(DEtools):. You can learn about these commands by typing ?commandname.

It is required that you work in a group of two or three people. Any help you receive from a
source other than your lab partner(s) should be appropriately acknowledged. Your report should
provide coherent answers to each of the following questions. Only one project per group need be
submitted.

The Equations of Motion

In 1609, Johannes Kepler, writing in his Astronomia Nova, presented his three famous laws of motion
for a planet traveling around the sun. First, the planets travel on ellipses with the sun at one focus.
Second, the area swept out over equal times is always the same and third, the period squared divided
by the length of the semi-major axis cubed is the same for all planets. Later, Newton came along and
basically invented Calculus to verify Kepler’s laws, using his famous inverse square law of gravity. This
was a major triumph for mathematics and physics and marked the beginning of modern science and
technology. In this project, you will prove Kepler’s laws using the more modern techniques developed
in the theory of differential equations.

Consider two celestial bodies with positions q;, s € R?* and masses m;, my, respectively, interacting
according to Newton’s inverse square law of gravitation. Each body is attracted to the other in
proportion to the product of the masses and the inverse square of the distance between the two
bodies. Let d be the distance between the bodies, d = ||qs — qi|| where ||v|| is the standard Euclidean
length of the vector v.

To write down the differential equation for the two-body problem, we must write the force on each
body as a vector. The unit vector which points from q; towards qs is given by (qa — qi)/d, while the
unit vector pointing from qs towards q; is the opposite of this, (q; — q2)/d. (Recall that a unit vector
is obtained from a given vector by dividing the vector by its length.) We then multiply the magnitude
of the force given by Newton’s law of gravitation by each unit vector. Choosing units so that the
gravitational constant is G = 1 (the proportionality constant), the system of differential equations for
the two-body problem is given by
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Since each body q; has three components, this is really a system of 6 second-order differential
equations. Changing to a first-order system with the velocities of each component as variables leads
to a 12-dimensional system. “Solving” the 2-body problem essentially means answering the following
question: Given the initial position and initial velocity of each body (12 numbers), what is the ensu-
ing motion of the two bodies? Although this seems difficult (we barely understand two-dimensional
phase portraits!) there are several useful reductions that can be performed which greatly simplify the
problem.

The Project
1. The center of mass of the system q(t) is defined as

o omuqi(t) + maqa(t)
q(t) = :
mq + mo

As the bodies move, so does the center of mass. Show that q(t) = ¢t + ¢y for some constant
vectors ¢; and cy. (Hint: Differentiate q(t) twice.) What are the values of ¢; and ¢y in terms of
the initial conditions q;(0),q2(0), ¢1(0), q2(0)? This shows that the center of mass is traveling
along a line in space at a constant velocity. The constants ¢; and c, are constants of motion
(integrals) since they are fixed once the initial conditions are specified.

2. The center of mass calculation above actually cuts the dimension of the problem in half from 12
to 6. To see this, we change from the q;,qy coordinate system to a Q;, Qs coordinate system
which has the center of mass fixed at the origin. Let Q; = q; — q and Q3 = q» — q be our new
position coordinates. (Remember, these coordinates are really functions of time.)

a. Show that m;Q(t) + maQa(t) = 0. Thus, the center of mass of the new system is always at
the origin.
b. Find the new equations of motion in Q;, Qs coordinates.

c. By using the identity m;Q; (t)+m2Q2(t) = 0, show that the new equations of motion decouple
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It follows that we only need to solve one of these differential equations, say the one for Q;.
Once we have Q(t), we then use m;Q;(t) + m2Qa(t) = 0 to obtain Qq(t).

3. We have reduced the two-body problem down to the system
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where q € R* and A > 0 is a constant depending on the masses. This problem is known as
the Kepler problem and more generally, is an example of a central force problem. If q
is the position of the Earth (or any planet, asteroid, satellite, etc.), then this ODE models the
motion of the Earth around the sun (assumed to be fixed at the origin.) Although the problem is
six-dimensional, there are further reductions available using conservation of angular momentum.



a. Let u(t) and v(¢) be arbitrary vectors in R* depending on time ¢. Using standard rectangular
coordinates and the formula for the cross product of two vectors u x v, show that
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a(uxv) =uxv+uxv

This is the product rule for the cross product.

b. Using the identity just proven, show that

q(t) x q(t) = Q Vi (6)

for some constant vector 2 € R®. The vector € is called the angular momentum and is
another constant of motion.

c. Suppose that Q # 0. Show that q(¢) is orthogonal to € for all time ¢. In other words, the
motion of q lies in a fixed plane with normal vector €.

4. By making another change of coordinates, we can assume that the plane of motion for q is the
xy-plane. In other words, choose coordinates so that the angular momentum (2 lies on the z-axis,
2 =10,0,w]. We will not actually do this here but the change of coordinates is similar to that
used for moving the center of mass to the origin. This reduces the problem from 6 dimensions
to 4 (two position variables x and y and their respective velocities.) From now on, we think of
q as a vector in the plane and set q = [z, y].

a. Show that with our new setup, identity (6) reduces to
TY—Yr = w (7)

b. Changing to polar coordinates for the moment, x = rcos#, y = rsin 6, show that identity (7)
becomes
2 (8)

Consequently, if we can find r(t), then integrating equation (8) once will yield 6(¢). Also
notice that @ is strictly positive or negative, depending on the sign of w. This means that 6(¢)
is monotonic and the motion is always in the same direction, counterclockwise or clockwise.
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c. In polar coordinates, the area A(t) swept out by a vector of radius r(t) satisfies A = %1"29'.
(Recall the formula for the area of a sector is A = r?6/2.) Use this to verify Kepler’s
Second Law: The line segment joining the sun to a planet sweeps out equal areas in equal
times.

5. To fully understand the motion of the planet, we need to find an expression for the radius r(t).
There are two cases depending on whether (2 = 0 or €2 # 0. First, we need to derive an important
identity.

a. Let u,v and w be three vectors in R®*. By using usual rectangular coordinates, prove the
vector identity
(uxv)xw = (u-w)v— (v -wu (9)

Note that both sides are vectors. Here u - w is the usual dot product.
b. Let q(t) = [z(t), y(¢)] so that ||q(t)| = v/22(t) + y*(t). Show that
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c. Use the two identities (9) and (10) to prove that
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6. Angular Momentum 2 = 0

. What relationship must the initial conditions q(0) and q(0) satisfy so that 2 = 07
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. Using equation (11) show that if Q2 = 0, then the unit vector q/||q|| is constant for all time.
Conclude that the motion of the body is on a fixed line through the origin. Does this make
physical sense given your answer to part a.”

c. Since the motion is on a line, set q(¢) = (z(t),0) where x(¢) > 0. Thus we restrict the motion
to the positive z-axis. Recall that the sun is fixed at the origin. We say that a collision
occurs at time 7' if

lim z(t) = 0
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Note that the ODE (5) is undefined if ¢ = 0. Let & = v and convert the ODE (5) into a
planar first-order system in the variables x and v.

d. Show that the resulting system is Hamiltonian and give a Hamiltonian function H(x,v). The
function H in mechanics is usually called the energy. Since solutions lie on level curves of
H, energy is a conserved quantity.

e. Using your Hamiltonian and other techniques for drawing planar phase portraits, sketch the
phase portrait in the zv-plane. (Assume that = > 0.) Feel free to use MAPLE or Polking’s
ODE software to check your sketch. Note that A > 0.
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Using your sketch, describe the fate of different solutions in forward time. Be sure to dif-
ferentiate between the case v(0) = vy < 0 and v(0) = vy > 0. Do collisions occur? If
x(0) = xy = 1, what condition on the initial velocity vy guarantees that the planet does not
collide with the sun in forward time? EXTRA CREDIT: Prove that every collision occurs
in finite time.

7. Angular Momentum (2 # 0

a. Using equation (11) show that if 2 # 0, then

A(%HJrE) — qxQ (12)

where E is a constant vector, our final integral of motion.

b. Take the dot product of both sides of equation (12) with € to conclude that E - ©Q = 0.
Consequently, E is in the plane of motion.

c. Using the vector identity u- (v x w) = (u x v) - w, take the dot product of both sides of
equation (12) with q (on the left) to conclude that
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d. Again, there is a change of variables (a rotation of the plane of motion) so that E lies on the

positive z-axis. Thus, set E = [e, 0] with e > 0. Using polar coordinates © = rcosf and

y = rsinf, show that
w?/ A
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This gives an equation for r(¢) in terms of §(t). Although we don’t actually have an
expression for 6(t), we know that it is a monotonic function. By substituting the equation
for r(t) into the identity @ = w/r® we have a first-order separable ODE in terms of the
dependent variable 6

2
% = %(1+ecos€)2. (15)

Unfortunately, this can not be solved using elementary functions. The problem is said to
be solvable up to quadrature.

e. After all this work it is a tad depressing to find out the problem can not be solved with
“nice” functions. However, the good news is that we can describe the motion of the planet
determined by q completely. Equation (14) is the equation of a conic section in polar
coordinates! This verifies Kepler’s First Law, that the motion of the planet travels on
an ellipse with the sun at one of the foci. To find out where the planet is at a specific time
t, we need to numerically integrate equation (15) to find the exact angle 6(t).

The type of conic section depends on the value of the constant e. Show that if e = 0, the
motion of the planet is circular. What is the period 7" of this solution, that is, what is the
length of a year? What is the radius a of the circle? Verify Kepler’s Third Law for the
case e = (:
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Note that this ratio only depends on the constant A, which in turn, depends on the gravi-
tational constant and attractive force from the sun. Assuming this is the same in a given

solar system, the ratio 7%/a® is thus identical for any planet.

f. Show that the conic section described by equation (14) is an ellipse if 0 < e < 1, a parabola
when e = 1 and a hyperbola for e > 1. To make things easier, you may assume that
w?/X = 1. Hint: Graph the conic section and then use symmetry to find an expression in
Cartesian coordinates. It may help to recall the definitions of the various conic sections. To
graph a conic section using MAPLE, you can use the command polarplot . You must
first load the plots package by typing with(plots); . Typing

polarplot(1/(1+0.5%cos(theta)));

for example, will draw the conic section with e = 1/2. You might find it useful to sketch
over a limited range for #. For example,

polarplot(1/(1+0.5*cos(theta)),theta=0..Pi);

only evaluates the polar equation from 0 < < 7.

g. EXTRA CREDIT: For the case 0 < e < 1, let T" be the period of the elliptical orbit and let
a be the length of the semi-major axis of the ellipse. Verify Kepler’s Third Law:
T? 472
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You will need to use the formula for the area of an ellipse in terms of eccentricity e and a.



