
ODE Math 304-01, Fall 2004Computer Projet #4Solving the Two-Body ProblemDUE DATE: Tuesday De. 7, 5:00 pm.The goal of this projet is to \solve" the lassial two-body problem from elestial mehanis.Although expliit analyti solutions are impossible to obtain, there are powerful geometri and qual-itative tehniques available whih make the problem tratable. You will use many of the methodsdeveloped for nonlinear systems thus far, spei�ally ideas from Hamiltonian systems theory suh asintegrals of motion. Many of the arguments rely heavily on identities and onepts from multivariablealulus.For this projet you may use MAPLE or the ODE software by John Polking available athttp://math.rie.edu/�dfield/dfpp.html. You may have to adjust your printing settings toprint from the web using the Polking software. (See instrutions on his website.) The ommandsfor MAPLE inlude phaseportrait and polarplot. Be sure to load the ODE pakage by typingwith(DEtools):. You an learn about these ommands by typing ?ommandname.It is required that you work in a group of two or three people. Any help you reeive from asoure other than your lab partner(s) should be appropriately aknowledged. Your report shouldprovide oherent answers to eah of the following questions. Only one projet per group need besubmitted.The Equations of MotionIn 1609, Johannes Kepler, writing in his Astronomia Nova, presented his three famous laws of motionfor a planet traveling around the sun. First, the planets travel on ellipses with the sun at one fous.Seond, the area swept out over equal times is always the same and third, the period squared dividedby the length of the semi-major axis ubed is the same for all planets. Later, Newton ame along andbasially invented Calulus to verify Kepler's laws, using his famous inverse square law of gravity. Thiswas a major triumph for mathematis and physis and marked the beginning of modern siene andtehnology. In this projet, you will prove Kepler's laws using the more modern tehniques developedin the theory of di�erential equations.Consider two elestial bodies with positions q1;q2 2 R3 and massesm1; m2, respetively, interatingaording to Newton's inverse square law of gravitation. Eah body is attrated to the other inproportion to the produt of the masses and the inverse square of the distane between the twobodies. Let d be the distane between the bodies, d = jjq2�q1jj where jjvjj is the standard Eulideanlength of the vetor v.To write down the di�erential equation for the two-body problem, we must write the fore on eahbody as a vetor. The unit vetor whih points from q1 towards q2 is given by (q2 � q1)=d, while theunit vetor pointing from q2 towards q1 is the opposite of this, (q1�q2)=d. (Reall that a unit vetoris obtained from a given vetor by dividing the vetor by its length.) We then multiply the magnitudeof the fore given by Newton's law of gravitation by eah unit vetor. Choosing units so that thegravitational onstant is G = 1 (the proportionality onstant), the system of di�erential equations forthe two-body problem is given by m1�q1 = m1m2(q2 � q1)d3 (1)m2�q2 = m1m2(q1 � q2)d3 (2)1



Sine eah body qi has three omponents, this is really a system of 6 seond-order di�erentialequations. Changing to a �rst-order system with the veloities of eah omponent as variables leadsto a 12-dimensional system. \Solving" the 2-body problem essentially means answering the followingquestion: Given the initial position and initial veloity of eah body (12 numbers), what is the ensu-ing motion of the two bodies? Although this seems diÆult (we barely understand two-dimensionalphase portraits!) there are several useful redutions that an be performed whih greatly simplify theproblem.The Projet1. The enter of mass of the system �q(t) is de�ned as�q(t) = m1q1(t) +m2q2(t)m1 +m2 :As the bodies move, so does the enter of mass. Show that �q(t) = 1t + 2 for some onstantvetors 1 and 2. (Hint: Di�erentiate �q(t) twie.) What are the values of 1 and 2 in terms ofthe initial onditions q1(0);q2(0); _q1(0); _q2(0)? This shows that the enter of mass is travelingalong a line in spae at a onstant veloity. The onstants 1 and 2 are onstants of motion(integrals) sine they are �xed one the initial onditions are spei�ed.2. The enter of mass alulation above atually uts the dimension of the problem in half from 12to 6. To see this, we hange from the q1;q2 oordinate system to a Q1;Q2 oordinate systemwhih has the enter of mass �xed at the origin. Let Q1 = q1 � �q and Q2 = q2 � �q be our newposition oordinates. (Remember, these oordinates are really funtions of time.)a. Show that m1Q1(t) +m2Q2(t) = 0. Thus, the enter of mass of the new system is always atthe origin.b. Find the new equations of motion in Q1;Q2 oordinates.. By using the identitym1Q1(t)+m2Q2(t) = 0, show that the new equations of motion deoupleinto �Q1 = �m32(m1 +m2)2 Q1jjQ1jj3 (3)�Q2 = �m31(m1 +m2)2 Q2jjQ2jj3 (4)It follows that we only need to solve one of these di�erential equations, say the one for Q1.One we have Q1(t), we then use m1Q1(t) +m2Q2(t) = 0 to obtain Q2(t).3. We have redued the two-body problem down to the system�q = � �qjjqjj3 (5)where q 2 R3 and � > 0 is a onstant depending on the masses. This problem is known asthe Kepler problem and more generally, is an example of a entral fore problem. If qis the position of the Earth (or any planet, asteroid, satellite, et.), then this ODE models themotion of the Earth around the sun (assumed to be �xed at the origin.) Although the problem issix-dimensional, there are further redutions available using onservation of angular momentum.2



a. Let u(t) and v(t) be arbitrary vetors in R3 depending on time t. Using standard retangularoordinates and the formula for the ross produt of two vetors u� v, show thatddt (u� v) = _u� v + u� _vThis is the produt rule for the ross produt.b. Using the identity just proven, show thatq(t)� _q(t) = 
 8t (6)for some onstant vetor 
 2 R3 . The vetor 
 is alled the angular momentum and isanother onstant of motion.. Suppose that 
 6= 0. Show that q(t) is orthogonal to 
 for all time t. In other words, themotion of q lies in a �xed plane with normal vetor 
.4. By making another hange of oordinates, we an assume that the plane of motion for q is thexy-plane. In other words, hoose oordinates so that the angular momentum 
 lies on the z-axis,
 = [0; 0; !℄. We will not atually do this here but the hange of oordinates is similar to thatused for moving the enter of mass to the origin. This redues the problem from 6 dimensionsto 4 (two position variables x and y and their respetive veloities.) From now on, we think ofq as a vetor in the plane and set q = [x; y℄.a. Show that with our new setup, identity (6) redues tox _y � y _x = ! (7)b. Changing to polar oordinates for the moment, x = r os �; y = r sin �, show that identity (7)beomes _� = !r2 (8)Consequently, if we an �nd r(t), then integrating equation (8) one will yield �(t). Alsonotie that _� is stritly positive or negative, depending on the sign of !. This means that �(t)is monotoni and the motion is always in the same diretion, ounterlokwise or lokwise.. In polar oordinates, the area A(t) swept out by a vetor of radius r(t) satis�es _A = 12r2 _�.(Reall the formula for the area of a setor is A = r2�=2.) Use this to verify Kepler'sSeond Law: The line segment joining the sun to a planet sweeps out equal areas in equaltimes.5. To fully understand the motion of the planet, we need to �nd an expression for the radius r(t).There are two ases depending on whether 
 = 0 or 
 6= 0. First, we need to derive an importantidentity.a. Let u;v and w be three vetors in R3 . By using usual retangular oordinates, prove thevetor identity (u� v)�w = (u �w)v � (v �w)u: (9)Note that both sides are vetors. Here u �w is the usual dot produt.b. Let q(t) = [x(t); y(t)℄ so that jjq(t)jj =px2(t) + y2(t). Show thatddt (jjqjj) = _q � qjjqjj : (10)3



. Use the two identities (9) and (10) to prove thatddt � qjjqjj� = 
� qjjqjj3 (11)6. Angular Momentum 
 = 0a. What relationship must the initial onditions q(0) and _q(0) satisfy so that 
 = 0?b. Using equation (11) show that if 
 = 0, then the unit vetor q=jjqjj is onstant for all time.Conlude that the motion of the body is on a �xed line through the origin. Does this makephysial sense given your answer to part a.?. Sine the motion is on a line, set q(t) = (x(t); 0) where x(t) > 0. Thus we restrit the motionto the positive x-axis. Reall that the sun is �xed at the origin. We say that a ollisionours at time T if limt!T� x(t) = 0Note that the ODE (5) is unde�ned if q = 0. Let _x = v and onvert the ODE (5) into aplanar �rst-order system in the variables x and v.d. Show that the resulting system is Hamiltonian and give a Hamiltonian funtion H(x; v). Thefuntion H in mehanis is usually alled the energy. Sine solutions lie on level urves ofH, energy is a onserved quantity.e. Using your Hamiltonian and other tehniques for drawing planar phase portraits, sketh thephase portrait in the xv-plane. (Assume that x � 0.) Feel free to use MAPLE or Polking'sODE software to hek your sketh. Note that � > 0.f. Using your sketh, desribe the fate of di�erent solutions in forward time. Be sure to dif-ferentiate between the ase v(0) = v0 � 0 and v(0) = v0 > 0. Do ollisions our? Ifx(0) = x0 = 1, what ondition on the initial veloity v0 guarantees that the planet does notollide with the sun in forward time? EXTRA CREDIT: Prove that every ollision oursin �nite time.7. Angular Momentum 
 6= 0a. Using equation (11) show that if 
 6= 0, then�� qjjqjj +E� = _q� 
 (12)where E is a onstant vetor, our �nal integral of motion.b. Take the dot produt of both sides of equation (12) with 
 to onlude that E � 
 = 0.Consequently, E is in the plane of motion.. Using the vetor identity u � (v � w) = (u � v) � w, take the dot produt of both sides ofequation (12) with q (on the left) to onlude thatE � q+ jjqjj = !2� : (13)d. Again, there is a hange of variables (a rotation of the plane of motion) so that E lies on thepositive x-axis. Thus, set E = [e; 0℄ with e � 0. Using polar oordinates x = r os � andy = r sin �, show that r = !2=�1 + e os � : (14)4



This gives an equation for r(t) in terms of �(t). Although we don't atually have anexpression for �(t), we know that it is a monotoni funtion. By substituting the equationfor r(t) into the identity _� = !=r2 we have a �rst-order separable ODE in terms of thedependent variable � d�dt = �2!3 (1 + e os �)2: (15)Unfortunately, this an not be solved using elementary funtions. The problem is said tobe solvable up to quadrature.e. After all this work it is a tad depressing to �nd out the problem an not be solved with\nie" funtions. However, the good news is that we an desribe the motion of the planetdetermined by q ompletely. Equation (14) is the equation of a oni setion in polaroordinates! This veri�es Kepler's First Law, that the motion of the planet travels onan ellipse with the sun at one of the foi. To �nd out where the planet is at a spei� timet, we need to numerially integrate equation (15) to �nd the exat angle �(t).The type of oni setion depends on the value of the onstant e. Show that if e = 0, themotion of the planet is irular. What is the period T of this solution, that is, what is thelength of a year? What is the radius a of the irle? Verify Kepler's Third Law for thease e = 0: T 2a3 = 4�2�Note that this ratio only depends on the onstant �, whih in turn, depends on the gravi-tational onstant and attrative fore from the sun. Assuming this is the same in a givensolar system, the ratio T 2=a3 is thus idential for any planet.f. Show that the oni setion desribed by equation (14) is an ellipse if 0 < e < 1, a parabolawhen e = 1 and a hyperbola for e > 1. To make things easier, you may assume that!2=� = 1. Hint: Graph the oni setion and then use symmetry to �nd an expression inCartesian oordinates. It may help to reall the de�nitions of the various oni setions. Tograph a oni setion using MAPLE, you an use the ommand polarplot . You must�rst load the plots pakage by typing with(plots); . Typingpolarplot(1/(1+0.5*os(theta)));for example, will draw the oni setion with e = 1=2. You might �nd it useful to skethover a limited range for �. For example,polarplot(1/(1+0.5*os(theta)),theta=0..Pi);only evaluates the polar equation from 0 � � � �.g. EXTRA CREDIT: For the ase 0 < e < 1, let T be the period of the elliptial orbit and leta be the length of the semi-major axis of the ellipse. Verify Kepler's Third Law:T 2a3 = 4�2�You will need to use the formula for the area of an ellipse in terms of eentriity e and a.
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