ODE Math 304-01, Fall 2004

Computer Project \#4

Solving the Two-Body Problem

DUE DATE: Tuesday Dec. 7, 5:00 pm.

The goal of this project is to "solve" the classical two-body problem from celestial mechanics. Although explicit analytic solutions are impossible to obtain, there are powerful geometric and qualitative techniques available which make the problem tractable. You will use many of the methods developed for nonlinear systems thus far, specifically ideas from Hamiltonian systems theory such as integrals of motion. Many of the arguments rely heavily on identities and concepts from multivariable calculus.

For this project you may use MAPLE or the ODE software by John Polking available at http://math.rice.edu/~dfield/dfpp.html. You may have to adjust your printing settings to print from the web using the Polking software. (See instructions on his website.) The commands for MAPLE include phaseportrait and polarplot. Be sure to load the ODE package by typing with(DEtools):. You can learn about these commands by typing ?commandname.

It is required that you work in a group of two or three people. Any help you receive from a source other than your lab partner(s) should be appropriately acknowledged. Your report should provide coherent answers to each of the following questions. Only one project per group need be submitted.

The Equations of Motion

In 1609, Johannes Kepler, writing in his Astronomia Nova, presented his three famous laws of motion for a planet traveling around the sun. First, the planets travel on ellipses with the sun at one focus. Second, the area swept out over equal times is always the same and third, the period squared divided by the length of the semi-major axis cubed is the same for all planets. Later, Newton came along and basically invented Calculus to verify Kepler's laws, using his famous inverse square law of gravity. This was a major triumph for mathematics and physics and marked the beginning of modern science and technology. In this project, you will prove Kepler's laws using the more modern techniques developed in the theory of differential equations.

Consider two celestial bodies with positions $\mathbf{q}_{1}, \mathbf{q}_{2} \in \mathbb{R}^{3}$ and masses m_{1}, m_{2}, respectively, interacting according to Newton's inverse square law of gravitation. Each body is attracted to the other in proportion to the product of the masses and the inverse square of the distance between the two bodies. Let d be the distance between the bodies, $d=\left\|\mathbf{q}_{2}-\mathbf{q}_{1}\right\|$ where $\|\mathbf{v}\|$ is the standard Euclidean length of the vector \mathbf{v}.

To write down the differential equation for the two-body problem, we must write the force on each body as a vector. The unit vector which points from \mathbf{q}_{1} towards \mathbf{q}_{2} is given by $\left(\mathbf{q}_{2}-\mathbf{q}_{1}\right) / d$, while the unit vector pointing from \mathbf{q}_{2} towards \mathbf{q}_{1} is the opposite of this, $\left(\mathbf{q}_{1}-\mathbf{q}_{2}\right) / d$. (Recall that a unit vector is obtained from a given vector by dividing the vector by its length.) We then multiply the magnitude of the force given by Newton's law of gravitation by each unit vector. Choosing units so that the gravitational constant is $G=1$ (the proportionality constant), the system of differential equations for the two-body problem is given by

$$
\begin{align*}
& m_{1} \ddot{\mathbf{q}}_{1}=\frac{m_{1} m_{2}\left(\mathbf{q}_{2}-\mathbf{q}_{1}\right)}{d^{3}} \tag{1}\\
& m_{2} \ddot{\mathbf{q}}_{2}=\frac{m_{1} m_{2}\left(\mathbf{q}_{1}-\mathbf{q}_{2}\right)}{d^{3}} \tag{2}
\end{align*}
$$

Since each body \mathbf{q}_{i} has three components, this is really a system of 6 second-order differential equations. Changing to a first-order system with the velocities of each component as variables leads to a 12-dimensional system. "Solving" the 2-body problem essentially means answering the following question: Given the initial position and initial velocity of each body (12 numbers), what is the ensuing motion of the two bodies? Although this seems difficult (we barely understand two-dimensional phase portraits!) there are several useful reductions that can be performed which greatly simplify the problem.

The Project

1. The center of mass of the system $\overline{\mathbf{q}}(t)$ is defined as

$$
\overline{\mathbf{q}}(t)=\frac{m_{1} \mathbf{q}_{1}(t)+m_{2} \mathbf{q}_{2}(t)}{m_{1}+m_{2}}
$$

As the bodies move, so does the center of mass. Show that $\overline{\mathbf{q}}(t)=\mathbf{c}_{1} t+\mathbf{c}_{2}$ for some constant vectors \mathbf{c}_{1} and \mathbf{c}_{2}. (Hint: Differentiate $\overline{\mathbf{q}}(t)$ twice.) What are the values of \mathbf{c}_{1} and \mathbf{c}_{2} in terms of the initial conditions $\mathbf{q}_{1}(0), \mathbf{q}_{2}(0), \dot{\mathbf{q}}_{1}(0), \dot{\mathbf{q}}_{2}(0)$? This shows that the center of mass is traveling along a line in space at a constant velocity. The constants \mathbf{c}_{1} and \mathbf{c}_{2} are constants of motion (integrals) since they are fixed once the initial conditions are specified.
2. The center of mass calculation above actually cuts the dimension of the problem in half from 12 to 6 . To see this, we change from the $\mathbf{q}_{1}, \mathbf{q}_{2}$ coordinate system to a $\mathbf{Q}_{1}, \mathbf{Q}_{2}$ coordinate system which has the center of mass fixed at the origin. Let $\mathbf{Q}_{1}=\mathbf{q}_{1}-\overline{\mathbf{q}}$ and $\mathbf{Q}_{2}=\mathbf{q}_{2}-\overline{\mathbf{q}}$ be our new position coordinates. (Remember, these coordinates are really functions of time.)
a. Show that $m_{1} \mathbf{Q}_{1}(t)+m_{2} \mathbf{Q}_{2}(t)=0$. Thus, the center of mass of the new system is always at the origin.
b. Find the new equations of motion in $\mathbf{Q}_{1}, \mathbf{Q}_{2}$ coordinates.
c. By using the identity $m_{1} \mathbf{Q}_{1}(t)+m_{2} \mathbf{Q}_{2}(t)=0$, show that the new equations of motion decouple into

$$
\begin{align*}
\ddot{\mathbf{Q}}_{1} & =\frac{-m_{2}^{3}}{\left(m_{1}+m_{2}\right)^{2}} \frac{\mathbf{Q}_{1}}{\left\|\mathbf{Q}_{1}\right\|^{3}} \tag{3}\\
\ddot{\mathbf{Q}}_{2} & =\frac{-m_{1}^{3}}{\left(m_{1}+m_{2}\right)^{2}} \frac{\mathbf{Q}_{2}}{\left\|\mathbf{Q}_{2}\right\|^{3}} \tag{4}
\end{align*}
$$

It follows that we only need to solve one of these differential equations, say the one for \mathbf{Q}_{1}. Once we have $\mathbf{Q}_{1}(t)$, we then use $m_{1} \mathbf{Q}_{1}(t)+m_{2} \mathbf{Q}_{2}(t)=0$ to obtain $\mathbf{Q}_{2}(t)$.
3. We have reduced the two-body problem down to the system

$$
\begin{equation*}
\ddot{\mathbf{q}}=-\frac{\lambda \mathbf{q}}{\|\mathbf{q}\|^{3}} \tag{5}
\end{equation*}
$$

where $\mathbf{q} \in \mathbb{R}^{3}$ and $\lambda>0$ is a constant depending on the masses. This problem is known as the Kepler problem and more generally, is an example of a central force problem. If \mathbf{q} is the position of the Earth (or any planet, asteroid, satellite, etc.), then this ODE models the motion of the Earth around the sun (assumed to be fixed at the origin.) Although the problem is six-dimensional, there are further reductions available using conservation of angular momentum.
a. Let $\mathbf{u}(t)$ and $\mathbf{v}(t)$ be arbitrary vectors in \mathbb{R}^{3} depending on time t. Using standard rectangular coordinates and the formula for the cross product of two vectors $\mathbf{u} \times \mathbf{v}$, show that

$$
\frac{d}{d t}(\mathbf{u} \times \mathbf{v})=\dot{\mathbf{u}} \times \mathbf{v}+\mathbf{u} \times \dot{\mathbf{v}}
$$

This is the product rule for the cross product.
b. Using the identity just proven, show that

$$
\begin{equation*}
\mathbf{q}(t) \times \dot{\mathbf{q}}(t)=\Omega \quad \forall t \tag{6}
\end{equation*}
$$

for some constant vector $\Omega \in \mathbb{R}^{3}$. The vector Ω is called the angular momentum and is another constant of motion.
c. Suppose that $\Omega \neq \mathbf{0}$. Show that $\mathbf{q}(t)$ is orthogonal to Ω for all time t. In other words, the motion of \mathbf{q} lies in a fixed plane with normal vector Ω.
4. By making another change of coordinates, we can assume that the plane of motion for \mathbf{q} is the $x y$-plane. In other words, choose coordinates so that the angular momentum Ω lies on the z-axis, $\Omega=[0,0, \omega]$. We will not actually do this here but the change of coordinates is similar to that used for moving the center of mass to the origin. This reduces the problem from 6 dimensions to 4 (two position variables x and y and their respective velocities.) From now on, we think of \mathbf{q} as a vector in the plane and set $\mathbf{q}=[x, y]$.
a. Show that with our new setup, identity (6) reduces to

$$
\begin{equation*}
x \dot{y}-y \dot{x}=\omega \tag{7}
\end{equation*}
$$

b. Changing to polar coordinates for the moment, $x=r \cos \theta, y=r \sin \theta$, show that identity (7) becomes

$$
\begin{equation*}
\dot{\theta}=\frac{\omega}{r^{2}} \tag{8}
\end{equation*}
$$

Consequently, if we can find $r(t)$, then integrating equation (8) once will yield $\theta(t)$. Also notice that $\dot{\theta}$ is strictly positive or negative, depending on the sign of ω. This means that $\theta(t)$ is monotonic and the motion is always in the same direction, counterclockwise or clockwise.
c. In polar coordinates, the area $A(t)$ swept out by a vector of radius $r(t)$ satisfies $\dot{A}=\frac{1}{2} r^{2} \dot{\theta}$. (Recall the formula for the area of a sector is $A=r^{2} \theta / 2$.) Use this to verify Kepler's Second Law: The line segment joining the sun to a planet sweeps out equal areas in equal times.
5. To fully understand the motion of the planet, we need to find an expression for the radius $r(t)$. There are two cases depending on whether $\Omega=\mathbf{0}$ or $\Omega \neq \mathbf{0}$. First, we need to derive an important identity.
a. Let \mathbf{u}, \mathbf{v} and \mathbf{w} be three vectors in \mathbb{R}^{3}. By using usual rectangular coordinates, prove the vector identity

$$
\begin{equation*}
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u} \tag{9}
\end{equation*}
$$

Note that both sides are vectors. Here $\mathbf{u} \cdot \mathbf{w}$ is the usual dot product.
b. Let $\mathbf{q}(t)=[x(t), y(t)]$ so that $\|\mathbf{q}(t)\|=\sqrt{x^{2}(t)+y^{2}(t)}$. Show that

$$
\begin{equation*}
\frac{d}{d t}(\|\mathbf{q}\|)=\frac{\dot{\mathbf{q}} \cdot \mathbf{q}}{\|\mathbf{q}\|} \tag{10}
\end{equation*}
$$

c. Use the two identities (9) and (10) to prove that

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\mathbf{q}}{\|\mathbf{q}\|}\right)=\frac{\Omega \times \mathbf{q}}{\|\mathbf{q}\|^{3}} \tag{11}
\end{equation*}
$$

6. Angular Momentum $\Omega=0$

a. What relationship must the initial conditions $\mathbf{q}(0)$ and $\dot{\mathbf{q}}(0)$ satisfy so that $\Omega=\mathbf{0}$?
b. Using equation (11) show that if $\Omega=\mathbf{0}$, then the unit vector $\mathbf{q} /\|\mathbf{q}\|$ is constant for all time. Conclude that the motion of the body is on a fixed line through the origin. Does this make physical sense given your answer to part a.?
c. Since the motion is on a line, set $\mathbf{q}(t)=(x(t), 0)$ where $x(t)>0$. Thus we restrict the motion to the positive x-axis. Recall that the sun is fixed at the origin. We say that a collision occurs at time T if

$$
\lim _{t \rightarrow T^{-}} x(t)=0
$$

Note that the ODE (5) is undefined if $\mathbf{q}=\mathbf{0}$. Let $\dot{x}=v$ and convert the ODE (5) into a planar first-order system in the variables x and v.
d. Show that the resulting system is Hamiltonian and give a Hamiltonian function $H(x, v)$. The function H in mechanics is usually called the energy. Since solutions lie on level curves of H, energy is a conserved quantity.
e. Using your Hamiltonian and other techniques for drawing planar phase portraits, sketch the phase portrait in the $x v$-plane. (Assume that $x \geq 0$.) Feel free to use MAPLE or Polking's ODE software to check your sketch. Note that $\lambda>0$.
f. Using your sketch, describe the fate of different solutions in forward time. Be sure to differentiate between the case $v(0)=v_{0} \leq 0$ and $v(0)=v_{0}>0$. Do collisions occur? If $x(0)=x_{0}=1$, what condition on the initial velocity v_{0} guarantees that the planet does not collide with the sun in forward time? EXTRA CREDIT: Prove that every collision occurs in finite time.

7. Angular Momentum $\Omega \neq 0$

a. Using equation (11) show that if $\Omega \neq 0$, then

$$
\begin{equation*}
\lambda\left(\frac{\mathbf{q}}{\|\mathbf{q}\|}+\mathbf{E}\right)=\dot{\mathbf{q}} \times \Omega \tag{12}
\end{equation*}
$$

where \mathbf{E} is a constant vector, our final integral of motion.
b. Take the dot product of both sides of equation (12) with $\boldsymbol{\Omega}$ to conclude that $\mathbf{E} \cdot \boldsymbol{\Omega}=0$. Consequently, \mathbf{E} is in the plane of motion.
c. Using the vector identity $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$, take the dot product of both sides of equation (12) with \mathbf{q} (on the left) to conclude that

$$
\begin{equation*}
\mathbf{E} \cdot \mathbf{q}+\|\mathbf{q}\|=\frac{\omega^{2}}{\lambda} \tag{13}
\end{equation*}
$$

d. Again, there is a change of variables (a rotation of the plane of motion) so that \mathbf{E} lies on the positive x-axis. Thus, set $\mathbf{E}=[e, 0]$ with $e \geq 0$. Using polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$, show that

$$
\begin{equation*}
r=\frac{\omega^{2} / \lambda}{1+e \cos \theta} \tag{14}
\end{equation*}
$$

This gives an equation for $r(t)$ in terms of $\theta(t)$. Although we don't actually have an expression for $\theta(t)$, we know that it is a monotonic function. By substituting the equation for $r(t)$ into the identity $\dot{\theta}=\omega / r^{2}$ we have a first-order separable ODE in terms of the dependent variable θ

$$
\begin{equation*}
\frac{d \theta}{d t}=\frac{\lambda^{2}}{\omega^{3}}(1+e \cos \theta)^{2} \tag{15}
\end{equation*}
$$

Unfortunately, this can not be solved using elementary functions. The problem is said to be solvable up to quadrature.
e. After all this work it is a tad depressing to find out the problem can not be solved with "nice" functions. However, the good news is that we can describe the motion of the planet determined by \mathbf{q} completely. Equation (14) is the equation of a conic section in polar coordinates! This verifies Kepler's First Law, that the motion of the planet travels on an ellipse with the sun at one of the foci. To find out where the planet is at a specific time t, we need to numerically integrate equation (15) to find the exact angle $\theta(t)$.
The type of conic section depends on the value of the constant e. Show that if $e=0$, the motion of the planet is circular. What is the period T of this solution, that is, what is the length of a year? What is the radius a of the circle? Verify Kepler's Third Law for the case $e=0$:

$$
\frac{T^{2}}{a^{3}}=\frac{4 \pi^{2}}{\lambda}
$$

Note that this ratio only depends on the constant λ, which in turn, depends on the gravitational constant and attractive force from the sun. Assuming this is the same in a given solar system, the ratio T^{2} / a^{3} is thus identical for any planet.
f. Show that the conic section described by equation (14) is an ellipse if $0<e<1$, a parabola when $e=1$ and a hyperbola for $e>1$. To make things easier, you may assume that $\omega^{2} / \lambda=1$. Hint: Graph the conic section and then use symmetry to find an expression in Cartesian coordinates. It may help to recall the definitions of the various conic sections. To graph a conic section using MAPLE, you can use the command polarplot . You must first load the plots package by typing with(plots); . Typing
polarplot(1/(1+0.5*cos(theta)));
for example, will draw the conic section with $e=1 / 2$. You might find it useful to sketch over a limited range for θ. For example,
polarplot (1/(1+0.5*cos(theta)), theta=0..Pi);
only evaluates the polar equation from $0 \leq \theta \leq \pi$.
g. EXTRA CREDIT: For the case $0<e<1$, let T be the period of the elliptical orbit and let a be the length of the semi-major axis of the ellipse. Verify Kepler's Third Law:

$$
\frac{T^{2}}{a^{3}}=\frac{4 \pi^{2}}{\lambda}
$$

You will need to use the formula for the area of an ellipse in terms of eccentricity e and a.

