ODE Math 304-01, Fall 2004
Computer Project #2

RLC Circuits and Resonance

DUE DATE: Monday, Nov. 15, in class.

The goal of this project is for you to apply your knowledge of second-order linear ODE’s to gain
some insight into electrical circuits. In particular, you will use MAPLE to find analytic formulas of
solutions as well as visualize solutions with graphs. You will learn about an important phenomenon
called resonance which surfaces in many applications of second-order linear ODE’s.

It is required that you work in a group of two or three people. Any help you receive from a
source other than your lab partner(s) should be appropriately acknowledged. Your report should
provide coherent answers to each of the following questions. Only one project per group need
be submitted.

The Equations for an RLC Circuit

An RLC circuit is one that contains each of the following:
e a voltage source vr(t) (time dependent)
e a resistor (something that dissipates electrical energy) with resistance R > 0
e an inductor (a device or component that stores magnetic energy) with inductance L > 0
e a capacitor (a device or component that stores electrical energy) with capacitance C > 0

It turns out, using Kirchoff’s current law, the Kirchoff voltage law and Ohm’s law, that the
amount of current and voltage through the resistor, inductor and capacitor is completely determined
by the current i(¢) flowing through the circuit and the voltage across the capacitor ve(f). We would
like to know how these quantities change with time.

The equations for the voltage v (t) and current i(¢) satisfy the nonautonomous linear system of
differential equations
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This system is more commonly written as a second-order linear ODE with forcing;:
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which are the same equations as the forced harmonic oscillator. For this lab, we will always consider
a periodic, sinusoidal voltage source (“forcing”) vr(t) = asin(wt). For more information on the RLC
circuit equations see Section 12.1 of the Hirsch, Smale, Devaney text or Lab 3.2 (pp. 362 - 364) of
the Blanchard, Devaney, Hall text.



Some MAPLE Commands

All of the plots necessary for this lab can be generated using the basic MAPLE plot command.
However, if you want to check your results, you can also use the DEplot command from Lab 1 to
plot approximate numerical solutions to the second-order ODE. For example, suppose we wanted
to find the solution to the initial-value problem

49+ 3y + 10y = 3cos(2t), y(0) =5, y'(0) = -3
First, load the DEtools package by typing with(DEtools); Then, define the ODE by typing:
eqn:=4xdiff (y(t),t$2)+3*diff (y(t),t)+10*y(t) = 3*cos(2xt);
and plot the solution for ¢ € [0, 10] using
DEplot(eqn,y(t),t=0..10, [[y(0)=5,D(y) (0)=-3]1],1inecolor=blue,stepsize = 0.01);

As in Lab 1, adjusting the linecolor and stepsize options, the range of t-values, etc. will
often be necessary to get reasonable, printable graphs.

Another useful command you may wish to run occasionally is k := ’k’; which clears the
value of £ and allows you to treat k as a variable rather than a constant. This is useful if you have
previously assigned a number to a variable but want to go back and use it as an unknown variable.

The Project

1. An Example

Suppose we want to understand the voltage in an RLC circuit with R = 1000, L = 2, and
C = 1075 and a voltage source vy = 20sin(50¢). We know the general solution to the ODE (1)
looks like ve(t) = vy (t) + cova(t) + v, (t), where cyvy(t) + coua(t) is the general solution of
the associated homogeneous equation and v,(t) is any particular solution.

Begin by defining our constants:
R := 1000: L :=2: C := 107(-6):

Note that the colon keeps the output from being returned on the screen, whereas a semi-colon
returns the output of the command. To find v (t), v2(¢) using MAPLE, we find the roots of
the characteristic polynomial of the corresponding first order system:

LCAN+ RCA+1 = 0.

You can use the fsolve command to find these roots numerically:
fsolve(L*Cxlambda”2 + R*Cxlambda + 1 = 0, lambda, complex);

Call the roots a =i and define them in a command line using alpha := and beta :=
Now, the general solution of the homogeneous equation has the form ¢;e® cos(t)+coe sin(St).
Define these two solutions here as functions using:

vl := t -> exp(alphaxt)*cos(betaxt);
v2 =t -> exp(alpha*t)*sin(beta*t);



Next we need to find a particular solution v,. Using the complexification method discussed in
class, (this is also known as the method of undetermined coefficients,) guess a solution
of the form v, () = ke'*. Plug v,(t) into the ODE and find the value of the complex constant
k. You should obtain the equation

—2500LCk 4+ RCH0itk + k = 20.

This can be solved with
fsolve (L¥C*(-2500) *k + R*Cx50%Ixk + k = 20,k,complex);

Note that in MAPLE, the imaginary number 7 is typed as I . Define your solution to be the
constant k := . You can find v, by taking the imaginary part of ke'"%. Using MAPLE,
this can be accomplished with the commands

assume (t,real);
Im(kxexp (I*50%t)) ;

The assume command is used to tell MAPLE that t is a real variable. Copy and paste your
solution to the function v,(¢), that is, vp := t -> ... . Then, define the general solution
using

ve =t -> clxvi(t) + c2xv2(t) + vp(t);

MAPLE is also useful for solving initial-value problems. To find the values of ¢; and ¢y that
give a solution with v(0) = 0, v'(0) = 1, you can type

initeqs:={vc(0)=0,subs(t=0,diff (vc(t),t))=1}:
fsolve(initeqgs,{c1,c2});

Defining the constants c¢1 := ... and c2 := ... give us the solution v (¢) to the initial-
value problem.

Plot the solution v.(¢) using the plot command. Be sure to choose an appropriate plot
domain. Also plot the homogeneous solution ¢;v(t) 4 cav(t) to see why the solution ve looks
indistinguishable from a sinusoidal function. The homogeneous solution is usually referred to
as the transient part of the solution while the particular solution v,(¢) is often called the
steady-state solution. It is the steady-state solution which determines the eventual behavior
of the system while the transient part determines how quickly the solution approaches the
steady-state.

Note: All that needs to be handed in for this problem is the formula for the solution to the
initial-value problem, a good plot of this solution and a good plot of its homogeneous solution.

. Amplitude of the Steady-State Solution
Consider the RLC circuit ODE

LCv¢ + RCve +ve = asin(wt) (2)

with periodic voltage source. How does the amplitude of the steady-state solution depend on
the parameters L, R, C, a,w? The following questions are to be done without MAPLE.



a. Find, by hand, the eigenvalues of the characteristic polynomial for the associated homoge-
neous equation. Show that if R > 0, then every solution of this equation tends to zero as
t — oo. This is why the homogeneous solution if often described as “transient.” (Recall
that we assumed L > 0,C > 0 and R > 0.)

b. Show that a function of the form v,(t) = a cos(wt) — fsin(wt) can be written in the form
v,(t) = Acos(wt + @)

where A = y/a?+ 2. A is the amplitude and ¢ is the phase of v,. Note that v,(t)
is equivalent to the real part of (a + i)e™!. Thus the amplitude of v, is equivalent
to the modulus of the complex coefficient o + i3. (The modulus of a complex number
k = a+if is given by |k| = y/a? + (2.)

c. Suppose that R > 0. Find, by hand, the complex formula for the steady-state solution.
In other words, letting v,(t) = ke™!, solve to find k. Then find |k|, the modulus of the
complex coefficient, to obtain a formula for the amplitude of the steady-state solution.
Your answer should depend on all five of our parameters.

d. How does the amplitude depend on a? Does this make physical sense?

. How does the amplitude depend on R? Does this make physical sense?
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Suppose that the frequency w satisfies

What happens to the amplitude as the resistance R approaches zero?

. Resonance

The previous question hints at an important phenomenon called resonance. Suppose L, C' >
0, but the resistance R = 0. (This is a very, very idealized situation, of course, even bet-
ter than “superconductivity.”) Let p(A) be the characteristic polynomial of the associated
homogeneous equation for (2). There are two cases:

e iw is not a root of p(A)

e iw is a root of p(A\)

a. Show that iw is a root of p(A) if and only if

This is the resonance case.

b. In the resonance case, find the formula for the general solution v (t) = c1v1(t) + cava(t) +
v,(t) by hand. Hint: Guessing v,(t) = ke will fail. Amend this guess by considering
what we did in the real case.

c. In the resonance case, as t gets larger, what function do solutions approach? What is the
behavior of solutions as ¢ — oc? What happens to the RLC circuit over time?

d. Give a “real-world” situation that might correspond to resonance. Is it a good or bad
thing to have a resonant solution?



4. An Example with Varying Frequency

Using MAPLE, calculate the solutions to the RLC ODE (2) with vy () = asin(wt) and
R=0,C=10°5L=1,a=1,vc(0) =1,v5(0) = 0, and w = 900,950, 1000, 1050, 1100 (this
is five different ODE’s with five different solutions.) Plot each solution, making sure to chose
your t interval carefully so as to obtain informative graphs. Note that it is necessary to actually
compute the analytic solution in each case because the MAPLE command DEplot does not

always give useful and/or accurate graphs of solutions. Does resonance occur for any of the
ODE’s? Explain.



