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Historical Overview of Climate Change Science Chapter 1

Frequently Asked Question 1.1
What Factors Determine Earth’s Climate?

The climate system is a complex, interactive system consisting 
of the atmosphere, land surface, snow and ice, oceans and other 
bodies of water, and living things. The atmospheric component of 
the climate system most obviously characterises climate; climate 
is often defi ned as ‘average weather’. Climate is usually described 
in terms of the mean and variability of temperature, precipitation 
and wind over a period of time, ranging from months to millions 
of years (the classical period is 30 years). The climate system 
evolves in time under the infl uence of its own internal dynamics 
and due to changes in external factors that affect climate (called 
‘forcings’). External forcings include natural phenomena such as 
volcanic eruptions and solar variations, as well as human-induced 
changes in atmospheric composition. Solar radiation powers the 
climate system. There are three fundamental ways to change the 
radiation balance of the Earth: 1) by changing the incoming solar 
radiation (e.g., by changes in Earth’s orbit or in the Sun itself); 2) 
by changing the fraction of solar radiation that is refl ected (called 

‘albedo’; e.g., by changes in cloud cover, atmospheric particles or 
vegetation); and 3) by altering the longwave radiation from Earth 
back towards space (e.g., by changing greenhouse gas concentra-
tions). Climate, in turn, responds directly to such changes, as well 
as indirectly, through a variety of feedback mechanisms. 

The amount of energy reaching the top of Earth’s atmosphere 
each second on a surface area of one square metre facing the 
Sun during daytime is about 1,370 Watts, and the amount of en-
ergy per square metre per second averaged over the entire planet 
is one-quarter of this (see Figure 1). About 30% of the sunlight 
that reaches the top of the atmosphere is refl ected back to space. 
Roughly two-thirds of this refl ectivity is due to clouds and small 
particles in the atmosphere known as ‘aerosols’. Light-coloured 
areas of Earth’s surface – mainly snow, ice and deserts – refl ect the 
remaining one-third of the sunlight. The most dramatic change in 
aerosol-produced refl ectivity comes when major volcanic erup-
tions eject material very high into the atmosphere. Rain typically 

FAQ 1.1, Figure 1. Estimate of the Earth’s annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and 
atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the 
Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by  evapotranspiration and by longwave radiation that is 
absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back to Earth as well as out to space. Source: Kiehl and Trenberth (1997).

(continued)

Figure: Heat Balance. Recall: Q = S/4 = 342 W/m2. Source: “Historical
Overview of Climate Change Science,” IPCC AR4, (2007) p. 96.
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Tilt of the Earth

Figure: The Earth is tilted (obliquity) 23.5◦ from the normal to the plane of the
ecliptic (the plane the planets travel in around the sun). The obliquity changes
on a 40,000 year cycle. Source: http://www.rsd17.org/TeacherWebPage/
HighSchool/JAnderson/A/introduction/earthinspace/earthsTilt.jpg
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Figure: The quadratic approximation to the insolation distribution s(y) is quite
good.
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Figure: Archimedes’ Hat-Box Theorem: S1 = S2 = 2πRh. The cylinder and
sphere have the same radius (a = R). Think of the sphere being
circumscribed by the cylinder.
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Why  y ?
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Why do we use  y = sine(latitude) instead of just latitude?
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global mean temperature

Because  y  is directly proportional to surface area.

Budyko’s Model
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Why y = sine(latitude)?
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Math 5490  9/10/2014

Budyko’s Model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

su
rf
ac
e 
ar
ea

 p
ro
po

rt
io
n

latitude

Tropic of Cancer

Minneapolis

Arctic Circle

Budyko’s Equation

( )(1 ( )) ( ) ( )TR Qs y y A BT C T T
t

Dw
 � � � � �

w

heat transportOLRalbedoinsolationheat capacity

surface temperature sin(latitude)
1

0
( )T T y dy ³

Budyko’s Model

0 sin(latitude) 1yd  dSymmetry assumption:

Chylek and Coakley’s quadratic 
approximation:

� � � �21 0.241 3 1s y y| � �

Math 5490  9/10/2014

Figure: A plot of y = sin θ along with some key latitudes. Due to Archimedes’
Hat-Box Theorem, the proportion of the Earth’s surface area from the equator
to a given latitude θ is simply y/2, and between −θ and θ it is just y .
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Figure: Graphs of equilibrium temperatures with (solid) and without (dashed)
latitude dependence. Ice free is α = 0.32 (red); snowball Earth is α = 0.62
(blue). Note that incorporating latitude allows ice caps to form in the ice free
case.
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Figure: Graphs of equilibrium temperatures with (C = 3.04; solid) and without
(C = 0; dashed) heat transport. Ice free is α = 0.32 (red); snowball Earth is
α = 0.62 (blue).
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Figure: Graphs of equilibrium temperatures with two-step albedo function for
different ice lines: η = 1 (red; ice free), η = sin(70◦) (orange; current),
η = sin(42.3◦) (green; Worcester), η = sin(23.5◦) (light blue; Tropic of
Cancer), η = 0 (blue; snowball).
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Figure: Plot of h(η) for the Widiasih ice-line equation dη/dt = εh(η) showing
two equilibria ice line positions at η1 ≈ 0.2562 (unstable) and η2 ≈ 0.9394
(stable).
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Figure: Equilibrium temperature profiles for the two ice line equilibrium points
η = η1 ≈ 0.2562 (blue) and η = η2 ≈ 0.9394 (red). The red curve is very
close to our current climate.
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Figure 3:
The position of the ice line as alphas varies. Curve of equlibria shown in 
red. Figure generated in Maple.

Figure: Bifurcation diagram showing the location of the ice line equilibria
(roots of h(η)) as the albedo parameter αs is varied. Note the tipping point at
αs ≈ 0.69557. Figure by Cara Donovan.
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Plot of h( ) at bifurcation

Figure: Plot of h(η) for αs = α∗
s showing saddle-node (tangent) bifurcation.

Once αs increases above α∗
s , there are no equilibria and the ice line

decreases toward the equator (Snowball Earth scenario).
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Figure 4:
The number of equilibrium solutions as alphas and A vary. Red corresponds to 2 
equilibrium solutions (1 stable, 1 unstable), green corresponds to 1 equilibrium 
solution and blue corresponds to no equilibrium solutions. � represents 
Neoproterozoic conditions, ★ represents current climate conditions. Figure 
generated in MATLAB.

Less CO2
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★

�

Figure: Two-dimensional bifurcation diagram indicating the number of ice line
equilibria as A and αS are varied. Red means two equilibria (one stable, one
unstable); green means one equilibrium (the other root is less than 0 or
greater than 1); blue indicates no equilibria. Figure by Cara Donovan.
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