
MATH 303, Mathematical Models

Computer Project #3: Energy Balance Models

DUE DATE: Friday, November 16, 5:00 pm

The goal of this project is for you to investigate the Earth’s climate using some low-dimensional
climate models called energy balance models. In the process of completing the lab, you will learn
some important lessons about mathematical modeling (e.g., units, variables, parameters, construct-
ing models from basic physical principles, refining models, tuning models, finding and analyzing
equilibria, etc.). Although this project does not require sophisticated technology to complete—it
could be done on a graphing calculator—another goal of the lab is for you to continue to experience
using the software Matlab. This project is adopted from the 2012 teaching module “Energy Balance
Models,” by D. Flath, H. Kaper, F. Wattenberg, and E. Widiasih
(available at http://dimacs.rutgers.edu/MPE/index.html).

For this project, it is required that you work in a group of two or three people. Any help
you receive from a source other than your lab partner(s) should be acknowledged in your report.
For example, a textbook, website, another student, etc. should all be appropriately referenced at
the end of your report. The project should be typed although you do not have to typeset your
mathematical notation. For example, you can leave space for a graph, computations, tables, etc.
and then write it in by hand later. You can also include graphs or computations in an appendix at
the end of your report. Your presentation is important and I should be able to understand what
you are saying. Spelling mistakes and sentence fragments, for example, should not occur. Only one
project per group need be submitted.

Your report should provide coherent answers to each of the following exercises. Be sure to read
carefully and answer all of the questions asked.
Note: Please turn in a printout of your Matlab file(s) (or send via email).

Mathematical Modeling

Part of the aim of this lab is to learn about the process of constructing and refining a mathe-
matical model of a physical system. The system of interest for us is the Earth’s climate system—a
complex system with several components: the atmosphere, oceans, lakes and other bodies of water,
snow and ice, land surface, all living things, and so on. The components interact and influence each
other in ways that we don’t always understand, so it is difficult to see how the system as a whole
evolves, let alone why it evolves the way it does. For some complex systems it is possible to build a
physical model and observe what happens if the environment changes. This is the case, for example,
for a school of fish, whose behavior we can study in an aquarium. It is also true for certain aspects
of human behavior, which we can study in a social network. But in climate science this is simply
not possible; we have only one Earth, and we cannot perform a controlled real-life experiment. The
best we can do if we want to gain insight into what might have happened to the Earth’s climate
system in the past, or what might happen to it in the future, is to build mathematical models and
“play” with them. Mathematical models are the climate scientists’ only experimental tools.

The modeling process—building and testing a series of imperfect models—is the most essential
brick in the foundation of climate science and an indispensable tool to evaluate the arguments for
or against climate change. Models are never perfect—at best, they provide some understanding and
some ability to test “what-if” scenarios. Especially in an area as complex as the Earth’s climate, we
cannot and should not expect perfection. Recognizing and identifying imperfection and uncertainty
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are key parts of all modeling and, especially, climate modeling.
Mathematical models of the Earth’s climate system come in many flavors. They can be simple

enough that we can use them for back-of-the-envelope calculations, or they can be so complicated
that we need a supercomputer to run them. Regardless of the type of model being used, we should
always keep in mind that they are simplified representations of the real world, they are not the “real
world,” and they are made for a purpose, namely to better understand what is driving our climate
system.

This project considers zero-dimensional energy balance models. They are the simplest pos-
sible description of the Earth’s climate system. Nevertheless, as we will discover, they can provide
insight into possible climate states of the planet. In these models, the state of the climate system is
characterized by a single variable: the temperature of the Earth’s surface, averaged over the entire
globe. An energy balance equation is derived under the assumption that the temperature of the
Earth increases if the Earth receives more energy from the Sun than it re-emits into space, and
that it decreases if the opposite is the case. We will construct energy balance models by finding
mathematical expressions for the incoming and outgoing energy. The models are tested against
“real-world” data and improved in successive steps of the modeling process to better match the
available data.

In this lab we will focus on the physics, but it is important to note that modeling the Earth’s
climate system is fundamentally an interdisciplinary activity. Understanding the Earth’s climate
requires knowledge, skills, and perspectives from multiple disciplines. For example, atmospheric
chemistry explains why much of the incoming energy from the Sun (largely in the ultraviolet and
visible regions of the spectrum) passes through the atmosphere and reaches the Earth’s surface,
but much of the black-body radiation emitted by the Earth (largely in the infrared regions of the
spectrum) is trapped by greenhouse gases like water vapor and carbon dioxide. Similarly, the life
sciences help us understand the part played by the biosphere in the Earth’s climate system—the
effects of the biosphere on the Earth’s albedo and the interactions between atmospheric chemistry
and plant and animal life.

Climate Model #1 : Calculating Thermal Equilibrium

We consider the Earth with its atmosphere, oceans, and all other components of the climate
system as a homogeneous solid sphere, ignoring differences in the atmosphere’s composition (e.g.,
clouds), differences among land and oceans, differences in topography (altitude), and many other
things.

The climate system is powered by the Sun, which emits radiation in the ultraviolet (UV) regime
(wavelength less than 0.4 µm). This energy reaches the Earth’s surface, where it is converted by
physical, chemical, and biological processes to radiation in the infrared (IR) regime (wavelength
greater than 5 µm). This IR radiation is then re-emitted into space. If the Earth’s climate is in
equilibrium (a steady state), the average temperature of the Earth’s surface does not change, so
the amount of energy received must equal the amount of energy re-emitted.

Modeling

Units

• Length: meter (m), a µm is a micrometer = 0.001 mm

• Energy: watt (W). 1 watt = 1 joule per second = 1 kg · m2

sec3 . A joule is the amount of work

done in applying a force of 1 Newton to move an object 1 meter.
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• Temperature: kelvin (K). An object whose temperature is 0 K has no thermal energy; 0 K is
absolute zero. Water freezes at 273.15 K = 0◦C and boils at 373.15 K = 100◦C. The Kelvin
scale is basically the Celsius scale shifted up by 273.15. The magnitude of a degree in the
Celsius scale is the same as the magnitude of a kelvin in the Kelvin scale, but the zero point
is different. For the Celsius scale, the zero point is the temperature at which water freezes;
for the Kelvin scale, the zero point is absolute zero.

Variables

• T = the temperature of the Earth’s surface averaged over the entire planet.

Physical Parameters

• R = the radius of the Earth.

• S = the solar constant (also referred to as the energy flux density). It is the amount of
energy (W) flowing through a flat surface of area 1 m2. From satellite observations we know
that S ≈ 1368 W/m2, although this value varies slightly based on sunspot activity.

• σ = 5.67 · 10−8 W/(m2 ·K4) (the Stefan-Boltzmann constant).

Building the Model

Viewed from the Sun, the Earth is really a disk with area πR2. Since the energy flux density
is S, the amount of incoming energy received by the Earth is

Ein = πR2S.

Note that the units of Ein are in watts (as expected) since the m2 “cancel” in the above formula.
To determine the amount of energy radiated out by the Earth, we will regard the planet as

a “black body” and use the Stefan-Boltzmann law: the energy flux equals σT 4, where σ is the
Stefan-Boltzmann constant and T is the average temperature of the planet. Recall that the surface
area of a sphere is 4πr2. Thus, the amount of energy radiated out by the Earth is

Eout = 4πR2σT 4.

Once again, you should check that the units of Eout are also in watts (W).

Thermal Equilibrium

If the incoming energy is greater than the outgoing energy, the Earth’s temperature increases.
If the incoming energy is lower than the outgoing energy, the Earth’s temperature decreases. If
the incoming energy balances the outgoing energy, the Earth’s temperature remains constant and
the planet is said to be in thermal equilibrium. In order to have thermal equilibrium, the
temperature T must satisfy Ein = Eout or

πR2S = 4πR2σT 4.

It is customary to introduce the constant Q = S/4 and work with Q instead of S. Some texts and
articles treat Q as the solar constant. Thus, the previous equation becomes

Q = σT 4. (1)
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Solving equation (1) for T , we find that the equilibrium temperature of the Earth is

T = (Q/σ)1/4. (2)

Exercise 1: Using the stated values of σ and S, use Matlab to compute the value of T in equa-
tion (2). Give your answer in both Kelvin and degrees Celsius. Look up the actual current mean
temperature of the planet. How does your answer compare to the value of T from your model?

Climate Model #2: Including Albedo

If you did the previous exercise correctly, your equilibrium temperature should have been around
10◦C below the actual current temperature of the planet. Our model predicts too cold a planet.
What went wrong?

One factor we neglected to include involves reflection—some of the incoming energy from the
Sun is reflected back out into space. Snow, ice, and clouds, for example, reflect a great deal of the
incoming light from the Sun. We use the term albedo to measure the Earth’s reflectivity.

Refining the Model

Let us introduce a new parameter α that measures the amount of energy from the Sun that is
reflected back into space before it reaches the surface of the Earth. A typical value for α averaged
over the whole planet is α = 0.3, meaning that about 70% of the incoming energy is absorbed
by the Earth’s surface. The value of α can depend greatly on latitude and/or temperature, as we
would expect a higher albedo near the poles since ice reflects more sunlight than land does. It is
important to note that α is a dimensionless parameter, that is, it has no units. This is because
it represents a percentage or fraction of a given quantity (energy), rather than a specific physical
object.

Our model now has a new value for incoming energy:

Ein = πR2S(1− α).

The 1 − α term is used (as opposed to just α) because α represents the proportion reflected, so
1 − α is the fraction absorbed. The outgoing energy Eout is unchanged. Simplifying Ein = Eout,
our new equilibrium temperature is obtained by solving the equation

Q(1− α) = σT 4 (3)

for T .

Exercise 2: Assuming α = 0.3, use Matlab to compute the value of T from equation (3). Give your
answer in both kelvin and degrees Celsius. How does our new equilibrium temperature compare to
the value obtained for the previous model? Is our new model an improvement? Why or why not?
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Climate Model #3: Tuning

If you did the previous exercise correctly, you should have found that the new model does an
even worse job at predicting the mean temperature of the Earth than the first model did. We
included more physics (the albedo), yet the results were worse. This is ok! Modeling is an iterative
process and sometimes what seems like an improvement to the model turns out to make things
worse. To fix the issue, we do not discard albedo, we include something new—the greenhouse
effect.

Greenhouse gases like carbon dioxide, methane, and water, as well as dust and aerosols, have
a significant effect on the properties of the atmosphere. The effect on the outgoing radiation is
difficult to model, but the simplest approach is to reduce the Stefan-Boltzmann law by some factor.

Let us introduce the dimensionless parameter ε representing the amount by which the outgoing
energy is reduced due to the greenhouse effect. We will assume 0 < ε < 1. A priori, the value of ε
is unknown. The new value for the outgoing energy radiated out by the Earth is now

Eout = 4πR2εσT 4.

To calculate our new thermal equilibrium, we once again solve Ein = Eout, which leads to

Q(1− α) = εσT 4. (4)

Now we are going to do something that might seem like cheating. We can’t solve equation (4)
to find the equilibrium value T because we don’t have a specific value for ε. But we can go the
other direction. Let’s use the current average temperature of the Earth T ∗ ≈ 287.7 K to find the
value of ε that makes equation (4) satisifed. In modeling jargon this is called tuning the model.
The point here is that we are adjusting our model so that the equilibrium temperature of our model
matches that of the planet.

Exercise 3:

(a) Assuming T = 287.7, use Matlab to compute the value of ε from equation (4). You should use
the same parameter values for α, S, etc. as before. Give your answer to four decimal places.
Denote this particular value as ε∗.

(b) Suppose that you decrease the value of ε below ε∗. What will happen to the equilibrium
temperature computed from equation (4)? Does this make sense? Explain in terms of physics
and the greenhouse effect.

Climate Model #4: A Differential Equation

Up until now, our climate models are basically static because there is no mechanism for the
temperature T to change over time. To address this, we now make the assumption that the temper-
ature changes at a rate proportional to the difference between the incoming and outgoing energy.
This leads to the following ODE:

C
dT

dt
= (1− α)Q− εσT 4, (5)

which builds off our previous model. The right-hand side of our ODE is Ein − Eout divided by
4πR2, the surface area of the Earth. On the left-hand side, we have a positive constant C that
represents the heat capacity of the planet (the amount of energy needed to raise the temperature
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of the planet by 1 K), and a derivative that measures the rate of change of the temperature (with
time t typically measured in years).

As a basic check on our model, note that if the incoming energy is greater than the outgoing
energy, then the right-hand side of equation (5) is positive so that dT/dt > 0. Thus, our model
predicts a gain in energy to cause the temperature of the planet to increase, as expected. Similarly,
if the outgoing energy is greater than the incoming energy, then the right-hand side of equation (5)
is negative and hence dT/dt < 0. In this case our model predicts a loss in planetary energy to cause
the temperature to decrease. Finally, if Ein = Eout, the right-hand side of equation (5) is zero and
dT/dt = 0, which means the temperature is constant (thermal equilibrium).

Define the right-hand side of equation (5) to be the function f(T ), that is,

f(T ) = (1− α)Q− εσT 4.

Although it looks complicated, f is just a function of one variable T , since the other variables are
all parameters (constants).

Exercise 4: Let ε = ε∗, the value you found in Exercise 3, part (a). Use Matlab to plot the graph
of f(T ) where 200 < T < 400 (remember that T is measured in kelvin).

(a) What does the vertical axis in your plot represent in the physical world? What are its units?

(b) What is the root (or zero) of f between 200 K and 400 K? Where have you seen this value
before? What does it represent?

(c) Suppose the current temperature is 300 K. Do you expect the temperature to increase, de-
crease, or stay the same? According to the model, where is the temperature heading over
time? Explain.

(d) Suppose the current temperature is 250 K. Do you expect the temperature to increase, de-
crease, or stay the same? According to the model, where is the temperature heading over
time? Explain.

Exercise 5: Now let ε = 0.5 and make a new plot of f(T ). Answer the same questions as in
Exercise 4 (skip part (a)) and compare your answers. Be sure to include both figures in your final
report.

Solving equations in Matlab

Solving equations in Matlab is pretty straight-forward using the vpasolve command. For instance,
to find a solution to cosx = x, type

syms x

vpasolve(cos(x) == x, x, 1.0)

at the command prompt. The syntax for the vpasolve command is to list the equation first (don’t
forget the double equal sign!), then the variable, then an initial guess. You can use this to solve
part (b) in the previous two exercises.
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Graphing in Matlab

To plot a function, you will first need to create a vector of input values. For example, to create a
vector of T -values between 0 and 10, type

T = 0:0.1:10;

This will create a vector called T containing values from 0 to 10 in increments of length 0.1. So the
vector starts as 0, 0.1, 0.2, 0.3, . . . and ends with 9.7, 9.8, 9.9, 10. Then we need to define a vector
that contains the function values f(T ). This is the tricky part. To handle a function such as
f(T ) = 5T 4, you need to type

y = 5*T.^4;

The all-important period before the carrot indicates that we wish to raise each entry in the vector
T to the fourth power. The expression T^4 will return an error (try it) as Matlab will interpret this
as raising the entire vector as a unit to the fourth power. This only works for square matrices, not
vectors.

The other issue to address is how to add a constant to our function. Here we need to make use
of the ones command. For example, to define the output values of f(T ) = 5T 4 + 7, you type

y = 5*T.^4 + 7*ones(size(T));

The command size(T) gives the length of the vector, and then the ones command will produce a
vector of all ones with the correct length. Multiplying this vector by 7 gives a vector of all 7’s with
the same length as T. Then we can add this to the 5*T.^4 command to obtain the correct vector
of function values.

Now we are ready to plot. Typing plot(T,y) should plot the function f(T ) = 5T 4 + 7 over the
domain T ∈ [0, 10]. Your graph will appear in a separate window. You can then click on the square
icon in the control panel (furthest to the right) to add things like grid lines and labels to your graph.
Try this particular example before attempting to plot the functions in Exercises 4 and 5.

Climate Model #5: Temperature Dependent Albedo

Our final climate model will incorporate the idea that albedo changes depending on temperature.
For colder temperatures, more ice forms, and the albedo α should be higher because ice reflects
more of the suns rays. On the other hand, for warmer temperatures we expect a lower albedo since
water absorbs more of the sun than ice does. One possible formula for our new albedo is

α(T ) = 0.7− 0.4
e(T−265)/5

1 + e(T−265)/5
, (6)

which satisfies α(T ) ≈ 0.7 for T < 250 and α(T ) ≈ 0.3 for T > 280. This is a monotonically
decreasing function of T , as desired. Using this new albedo, our model becomes

C
dT

dt
= (1− α(T ))Q− εσT 4, (7)

where α is no longer constant, but dependent on temperature T as indicated in equation (6).
Let g(T ) represent the function on the right-hand side of the ODE in equation (7). This

function is much more complicated than f(T ) used in the previous model. Finding the equilibria is
not possible analytically; it must be done numerically.
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Exercise 6: Let ε = ε∗, the value you found in Exercise 3, part (a).

(a) Use Matlab to find the equilibrium points for the ODE model described in equation (7). There
are three values (not one as with the previous models). Describe the kind of climate on the
planet for each equilibrium. What would it be like to live on Earth in each case?

(b) One way to visualize the different equilibria is to plot Ein and Eout on the same graph and see
where they intersect. To do this in Matlab you will need to define two different output vectors,
say y1 and y2, that represent the functions corresponding to Ein and Eout, respectively. Then
use the command plot(T,y1,‘b’,T,y2,‘r’) to produce both functions on the same plot.
The first will be in blue, while the second is in red.

(c) Draw the phase line for the ODE in equation (7) and classify each equilibrium point as a sink,
source, or node.

Exercise 7: Let ε be a changing parameter in the ODE model described in equation (7).

(a) As ε decreases below ε∗, a saddle-node bifurcation occurs at a special value εh. Find this value
(to seven decimal places) and describe the behavior of the system before, at, and after the
bifurcation. What is the climate of the Earth like after the bifurcation?

(b) As ε increases above ε∗, a saddle-node bifurcation occurs at a special value εsb. Find this value
(to seven decimal places) and describe the behavior of the system before, at, and after the
bifurcation. What is the climate of the Earth like after the bifurcation?

(c) Combining your answers to parts (a) and (b), sketch the bifurcation diagram for the ODE
model as the parameter ε varies (put ε on the horizontal axis and T on the vertical axis).

Note: To find the bifurcation values to a high degree of accuracy, you will need to solve a
system of two equations in two unknowns using Matlab. Below is some sample code you can use as
a guide:

syms x y

eqn1 = (x+1)*cos(x*y);

eqn2 = sin(x - 2) + tan(y);

Sols = vpasolve([eqn1 == 0, eqn2 == 0], [x y],[0.1,1.5]);

These commands are used to solve the system (x+ 1) cos(xy) = 0 and sin(x− 2) + tan y = 0. The
solution is computed with the vpasolve command. The values [0.1,1.5] are initial guesses of x
and y respectively for the solution (you need to make an educated guess). The solutions are stored
in the matrix Sols. To see the results, type Sols.x and Sols.y and hit return.

Sols.x = -1

Sols.y = 0.14019425002806923303467047539108
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