
MATH 303, Mathematical Models

Computer Project #1: Working with Data

CO2 Concentrations and Bird Flight Speeds

DUE DATE: Friday, September 14, 5:00 pm

The goal of this project is for you to gain experience working with real world data. You will fit
CO2 measurements from the Mauna Loa Observatory to both linear and quadratic curves. You will
also find a power law relationship between the flight speed of birds and their mass. Using linear
regression to obtain these fits, you can then better analyze and interpret the data in order to make
predictions about the future. We will be using Matlab to perform the calculations and to produce
plots, but the analysis could be performed on any standard statistical package. Some of the ideas
and material for this lab were borrowed from Chapters 9 and 10 of Mathematics and Climate, by
Hans Kaper and Hans Engler.

For this project, it is required that you work in a group of two or three people. Any help
you receive from a source other than your lab partner(s) should be acknowledged in your report.
For example, a textbook, website, another student, etc. should all be appropriately referenced at
the end of your report. The project should be typed although you do not have to typeset your
mathematical notation. For example, you can leave space for a graph, computations, tables, etc.
and then write it in by hand later. You can also include graphs or computations in an appendix
at the end of your report. Your presentation is important and I should be able to clearly read and
understand what you are saying. Spelling mistakes and sentence fragments, for example, should
not occur. Only one project per group need be submitted.

Your report should provide coherent answers to each of the following exercises. Be sure to read
carefully and answer all of the questions asked.

Note: Please include a printout of your Matlab script file(s) (or send via email).

1 Linear Regression

Suppose we have a set of data points {(xi, yi) : i = 1, . . . , n}. A plot of the data seems to reveal
a particular relationship between x and y (e.g., linear, quadratic, exponential, periodic). How do
we find the best fit to the data? The goal in regression analysis is to find a functional relationship
between x and y that best approximates the data. In other words, we seek some function f(x) so
that yi ≈ f(xi) for each data point.

The Method of Least Squares

Suppose we suspect the relationship between x and y is a simple linear function, y = mx + b.
Ideally, we want to find m and b so that yi = f(xi) = mxi + b, or, more practically speaking, we
want the error yi − f(xi) to be as small as possible.

Here is an approach using linear algebra. The equations we want to solve are

mx1 + b = y1

mx2 + b = y2
...

mxn + b = yn.
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Since this is n equations in the 2 unknowns m and b, this system is overdetermined and there is
typically no solution. The goal then, is to find the best fit to the data.

The above system of equations can be written more compactly as Xv = Y , where

X =


x1 1
x2 1
...

...
xn 1

 , v =

[
m
b

]
, and Y =


y1
y2
...
yn

 . (1)

The values of X and Y are determined by the data, but v is unknown. We would like the error
vector Y − Xv to be as small as possible. In other words, we want to minimize the length of the
error vector, ||Y −Xv||. This is equivalent to minimizing the square of the length,

||Y −Xv||2 = (y1 − (mx1 + b))2 + (y2 − (mx2 + b))2 + · · ·+ (yn − (mxn + b))2.

Minimizing the sum of the squares of the errors is called the method of least squares. We proved
the following theorem in class. Recall that XT denotes the transpose of the matrix X.

Theorem 1.1 The least squares solution to Xv = Y is the vector v satisfying the equation

XTXv = XTY. (2)

It is important to note that f(x) does not have to be a linear function for this technique to work.
The important feature is that the unknown parameters enter the problem linearly. For example, if
we had wanted to fit the data to a quadratic function f(x) = α2x

2 +α1x+α0, then the system can
still be written as Xv = Y , but now X and v become

X =


x21 x1 1

x22 x2 1

...
...

...

x2n xn 1

 and v =

α2

α1

α0

 . (3)

The beautiful aspect of the method of least squares is that equation (2) holds for any system of the
form Xv = Y .

If X is an n × p matrix (n data points, p unknown coefficients in the formula for f(x)), then
XTX is a p × p square symmetric matrix. If the columns of X are linearly independent, which is
typical in applications, then XTX is invertible and equation (2) has a unique solution given by

v = (XTX)−1 ·XTY. (4)

One can check that the dimension of the vector v is p×1. This vector is easily computed in Matlab.

Residuals and the Coefficient of Determination

Once we have obtained the vector v using equation (4), we have determined the best fit f(x).
The residuals, given by ri = yi− f(xi), measure how far each data point is from the fit. If we define
Ŷ as Ŷ = Xv, then the residual vector r is

r = Y − Ŷ = Y −Xv.
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The length of r gives some indication to the quality of the fit. A more commonly used measure in
statistics is the coefficient of determination or R2 value.

Let y represent the mean of the yi data, that is,

y =
1

n

n∑
i=1

yi ,

and let Y be the n× 1 vector

Y =


y

y
...
y

 .
The coefficient of determination is given by the formula

R2 =
||Ŷ − Y ||2
||Y − Y ||2

.
(5)

The value of R2 measures how well the fit Ŷ does in comparison to the mean Y . The closer the
value of R2 to 1, the better the fit.

Useful Matlab Commands

The table below provides some useful commands in Matlab for working with data and matrices.

Command Meaning

inv(A) inverse of the matrix A

A’ transpose of the matrix A

a = [1:0.1:7] vector with equally spaced entries between 1 and 7

ones(35,1) column vector with 35 ones

a(6) 6th entry in the vector a

a(6:12) 6th through 12th entries in the vector a

a.^2 the square of each entry in the vector a

A = [a b] a matrix whose columns are the vectors a and b

norm(a) length of the vector a

mean(a) mean of the entries in the vector a

A*B product of the matrices A and B

A*b product of the matrix A and vector b

plot(x,y,‘r’) plot of the points in vectors x and y in red

plot(x,y,‘r’, a,b,‘b’) two plots on the same set of axes in different colors
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Exercise 1: Warmup

Before trying to work with actual data, let’s begin with a simple example. Consider the 10 data
points (xi, yi) given in Table 1. A plot of this data (see Figure 1) indicates a linear relationship.

x y

1.0 3.3

1.6 3.5

2.3 3.2

3.1 3.5

3.7 4.1

4.2 4.9

5.4 5.0

6.1 5.3

6.5 5.6

7.0 6.5

Table 1: Some sample data.

1 2 3 4 5 6 7
x

3

3.5

4

4.5

5

5.5

6

6.5

y

Figure 1: A plot of the ten data points from Table 1.

(a) Using Matlab, enter the data into two column vectors x and y. Form the special data matrix
X shown in equation (1).

(b) Fit the data to a straight line using the method of least squares and equation (4). Give the
values of m and b. Print out a plot of the original data along with the linear fit.

(c) Using equation (5), find the R2 value and comment on the quality of your fit.

(d) Using your linear fit, estimate the value of y when x = 10.0 (one decimal place).
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Exercise 2: The Keeling Curve and Mauna Loa CO2 Data

Recall from class our discussion of the famous Keeling curve, one of the most important data sets
in climate science. Measurements of carbon dioxide (CO2) at the Mauna Loa Observatory at the
Mauna Loa volcano in Hawaii were begun by Charles Keeling in March of 1958 and continue to this
day under the guidance of his son Ralph Keeling. Air samples have been taken hourly, every day,
using the same measuring technique for 60 years.

For this portion of the project you should import the data into Matlab from the spreadsheet
titled CO2Data-MLO.xlsx. This file contains monthly averages of CO2 dry air mole fractions (in
parts per million by volume) measured in air samples collected in glass flasks. The measurements
given range from March of 1958 to August of 2018. To import the data into Matlab, click on the
Home tab, and then the Import Data button (green arrow). This will open up a new window and
allow you to click on the correct spreadsheet.

Import the relevant data into Matlab as column vectors. The columns to import are column C,
the decimal dates; Column E, the interpolated data; and Column F, the seasonal corrections. You
should adjust the range of the import to exclude the first two rows (e.g., F3:F728 is better than
F1:F728). Click on the Import Selection button and then choose Import Data from the drop-
down menu. This should create a vector in Matlab that is visible in your workspace. You can
change the name of the vector (do this) by clicking on the vector name in the workspace.

(a) Make a plot of the Keeling curve including both the interpolated data (in red) and seasonal
corrections (in black). The year should be on the horizontal axis and the CO2 concentrations
on the vertical. What is the reason for the oscillation in the red curve?

(b) Explain the meaning behind the decimal dates. How were these obtained? For example, why
is March of 1958 written as 1958.208 and July of 1958 written as 1958.542?

(c) Fit the interpolated data to a straight line using the method of least squares and equation (4).
Print out a plot of the original data along with the linear fit. Find the R2 value (four decimals)
and comment on the quality of your fit. According to your fit, what is the average predicted
increase in CO2 per year?

(d) Fit the data to a quadratic function using the method of least squares and equation (4). You
will need to compute the matrix X given in equation (3). Because the square of the years is
quite large, you might consider shifting the date vector so that t = 0 corresponds to March
of 1958 before trying the method of least squares. Print out a plot of the original data along
with the quadratic fit. Find the R2 value (four decimals) and comment on the quality of your
fit. Which approximation captures the trends in the data better, linear or quadratic?

(e) What does the leading coefficient of the quadratic reveal about the longer term trend of the
CO2 data?

(f) Using your quadratic fit, estimate the amount of CO2 at Mauna Loa in January of 2030, 2050,
and 2100.

(g) Plot the residuals for the quadratic fit for 1975 (from January to December). Explain the
reason for the shape of the graph.
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Exercise 3: Bird Flight Speeds

For this portion of the project you should import the data into Matlab from the spreadsheets
FalconsAdjust.xlsx and Swans.xlsx. The first spreadsheet, which we will simply call “falcons,” gives
flight speeds and biometry data for 38 species of falcons, crows and songbirds, while the second
spreadsheet, which we will refer to as “swans,” contains the same information for 26 species of
swans, ducks, and geese. The data was taken from the article “Flight Speeds among Bird Species:
Allometric and Phylogenetic Effects,” by Alerstam et. al., PLOS Biology, July 17, 2007. The
columns to import from each spreadsheet are column B (Ue = flight speed) and column H (mass).

In this exercise, we are searching for a power law relationship between the flight speeds of birds
v (m/sec) and their mass M (kg). We would like to find constants a and b such that v = aM b.
Taking the log of both sides of this equation gives

log(v) = b log(M) + log(a) .

Notice that, since v and M are given, this is a linear equation in the unknowns log(a) and b. Thus
we may apply the least squares technique, except using the log of the data rather than the original
data.

The set up for least squares becomes

X =


log(M1) 1

log(M2) 1

...
...

log(Mn) 1

 , v =

[
b

log(a)

]
, and Y =


log(v1)

log(v2)

...

log(vn)

 , (6)

but formula (4) still holds. The first entry in the vector v is the exponent b to our fit and the second
entry is the log of a. To find a we compute elog(a), assuming we are using the natural logarithm.

(a) Plot the log of the flight speeds versus the log of the mass for the falcon group and the swan
group. Make one plot, with the falcons in red and the swans in blue. Does their seem to be
a clear linear relationship between the data?

(b) Fit the log of the data for the swan group (log of flight speeds versus log of mass) to a line
using the method of least squares. Give the values of a and b. Does your answer make sense?
Find the R2 value (four decimals) and comment on the quality of your fit. Include a plot of
the log of the data along with the linear fit.

(c) Combine the flight speed data from both the falcon and swan groups into one vector. The
command w = [u; v] concatenates the vectors u and v into one vector w. Do the same thing
for the mass data. Now repeat part (b) using the combined data. How does the fit change?
Do you obtain a better approximation? Include a plot of the log of the combined data along
with the linear fit.

(d) Using additional species of birds (e.g., flamingo, hawks), the authors of the PLOS Biology
paper find a power law relationship of the form

v = 15.9M0.13

(see Figure 2). How close is your fit to the author’s? Explain any discrepancies. Instead
of the method of least squares, the author’s employed a technique called reduced major axis
regression.
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8/2/2018 PLOS Biology: Flight Speeds among Bird Species: Allometric and Phylogenetic Effects

http://journals.plos.org/plosbiology/article/figure?id=10.1371/journal.pbio.0050197.g001 1/2
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Flight Speeds among Bird Species: Allometric and Phylogenetic E�ects

Figure 1

Bird Flight Speeds (U ; m/s) Plotted in Relation to Body Mass (kg) and Wing Loading (N/m ) for 138 Species of Six Main Monophyletic
Groups

The lines show the scaling relationships U  = 15.9 × (mass)  and U  = 4.3 × (wing loading)  as calculated by reduced major axis
regression for all species (Table 1). All axes are in logarithmic scale. Inserts show means (± standard deviations) for the six main
phylogenetic groups in relation to these scaling lines. Species of the same group tend to fly at similar speeds, and phylogenetic group is
an important factor to account for the variation in U .

doi: https://doi.org/10.1371/journal.pbio.0050197.g001
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Figure 2: Bird flight speeds in relation to body mass and wing loading. Figure from the paper
“Flight Speeds among Bird Species: Allometric and Phylogenetic Effects,” by Alerstam et. al.,
PLOS Biology, July 17, 2007.
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