
MATH 242: Principles of Analysis

Homework Assignment #9

Partial Solutions

1. Suppose that f(x) =

{
x2 if x ∈ Q

0 if x 6∈ Q

(a) Show that f is differentiable at x = 0 and find f ′(0).

(b) Show that f is not differentiable at any other point.

(a) We use the definition of the derivative to compute f ′(0). Note that f(0) = 0 since 02 = 0.
We have

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
.

The quantity we are taking the limit of will either be x or 0 depending on whether x is rational
or irrational. In either case, the values approach (or equal) 0 as x approaches 0. Thus, we
expect that f ′(0) = 0 and give a rigorous ε-δ proof of this fact.

Let ε > 0 be given. Set δ = ε. Then,∣∣∣∣f(x)

x
− 0

∣∣∣∣ =

{
|x| if x ∈ Q

0 if x 6∈ Q
< ε

whenever 0 < |x| < δ. This proves that f ′(0) = 0.

(b) To show that f is not differentiable at any other point, we show that f is not continuous
at any point c 6= 0. There are two cases. First, if c ∈ Q − {0}, let xn = c +

√
2/n. This

is a sequence of irrationals (since the sum of a rational and an irrational is irrational) that
converges to the rational number c. Thus, f(xn) = 0 converges to 0, but f(c) = c2 6= 0, so
f(xn) does not converge to f(c). This shows that f is not continuous at any c ∈ Q− {0}.
Second, if c ∈ I, we can construct a sequence of rationals yn converging to c in the usual
fashion. See the solutions for Exercise 4.3.8 on HW #7, for example. Then, f(yn) = y2

n

converges to c2 using the BLT for sequences. But f(c) = 0 6= c2, so again, f(yn) does not
converge to f(c). This shows that f is not continuous at any c ∈ I.
Putting these two arguments together, we have shown that f is discontinuous at any c 6= 0.
By the contrapositive to Thm. 5.2.3, this shows that f is not differentiable at any c 6= 0.

5.2.2 (a) Let f(x) = 1/x. Then, by the definition of the derivative, we have

f ′(c) = lim
x→c

f(x)− f(c)

x− c
= lim

x→c

1/x− 1/c

x− c
= lim

x→c

c−x
xc

x− c
= lim

x→c

−1

xc
=
−1

c2
.

Since c was arbitrary, we have that f ′(x) = −1/x2.
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(b) To derive the quotient rule, we write f(x)
g(x)

as f(x) · 1
g(x)

and use the product rule to
differentiate this last expression. We have

d

dx

(
f(x) · 1

g(x)

)
= f ′(x) · 1

g(x)
+ f(x) · −1

(g(x))2
· g′(x) using the chain rule and (a)

=
f ′(x)g(x)

(g(x))2
− g′(x)f(x)

(g(x))2

=
f ′(x)g(x)− g′(x)f(x)

(g(x))2

as desired.

5.2.4 (a) Answer: a > 0.

We have, for any value of a, lim
x→0−

fa(x) = 0. If a > 0, then lim
x→0+

fa(x) = 0 agrees with the

left-hand limit. Since fa(0) = 0 for this case, we see that

lim
x→0

fa(x) = fa(0)

and fa is continuous at x = 0.

If a = 0, then lim
x→0+

fa(x) = 1 which does not equal the left-hand limit. If a < 0, then fa(0)

does not exist so the function is not continuous at x = 0.

(b) Answer: a > 1.

Using the definition of the derivative, assuming that a > 0, we have

f ′a(0) = lim
x→0

fa(x)− fa(0)

x− 0
= lim

x→0

fa(x)

x
.

As with Exercise #1, we have two cases:

fa(x)

x
=

{
xa−1 if x ≥ 0

0 if x < 0

Note that this is precisely fa−1. It follows from part (a) that lim
x→0

fa(x)

x
= 0 if and only if

a > 1. In this case, we have f ′a(0) = 0. If a = 1, then this limit does not exist (different values
from the left and right) and if 0 < a < 1, the right-hand limit approaches ∞ not zero. Away
from the point x = 0, we can use our usual rules of differentiation to see that (for a > 1)

f ′a(x) =

{
axa−1 if x ≥ 0

0 if x < 0

This function is continuous on all of R.
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(c) Answer: a > 2.

The only tricky point to check is x = 0. Using the definition of the derivative, but applied to
the function f ′a(x) (for a > 1), we have

f ′′a (0) = lim
x→0

f ′a(x)− f ′a(0)

x− 0
= lim

x→0

f ′a(x)

x
.

In this case, we have

f ′a(x)

x
=

{
axa−2 if x ≥ 0

0 if x < 0

Since the left-hand limit is clearly zero, it follows that lim
x→0

f ′a(x)

x
= 0 if and only if a > 2. In

this case, we have f ′′a (0) = 0. If a = 2, then this limit does not exist (different values from the
left and right) and if 1 < a < 2, the right-hand limit approaches ∞ not zero. Therefore, fa is
twice-differentiable iff a > 2.

5.3.4 (a) Proof: Let h(x) = [f(b)−f(a)]g(x)−[g(b)−g(a)]f(x). Since f and g are continuous
on [a, b], h, as the difference of continuous functions, is also continuous on [a, b]. Since f and
g are differentiable on (a, b), h is also differentiable on (a, b) and

h′(x) = [f(b)− f(a)]g′(x)− [g(b)− g(a)]f ′(x)

by Theorem 5.2.4 parts (i) and (ii). We compute that

h(b)−h(a) = [f(b)−f(a)]g(b)− [g(b)−g(a)]f(b)− [f(b)−f(a)]g(a)+[g(b)−g(a)]f(a) = 0.

In other words, h(a) = h(b). By Rolle’s Theorem, there exists a c ∈ (a, b) such that h′(c) = 0.
This means that

0 = h′(c) = [f(b)− f(a)]g′(c)− [g(b)− g(a)]f ′(c)

or
[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c)

as desired.

(b) Let x = g(t) and y = f(t) for a ≤ t ≤ b be parametric equations for a curve in the
xy-plane. The endpoints of this curve occur at t = a and t = b, and are given by the
two points (g(a), f(a)) and (g(b), f(b)). The slope of the line segment between these two
points is (f(b) − f(a))/(g(b) − g(a)). From multivariable calculus, the velocity vector along
the parametrized curve is given by g′(t) i + f ′(t) j. The slope of this vector is f ′(t)/g′(t).
Therefore, the conclusion of the Generalized Mean Value Theorem,

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
,

states that there is some point along the interior of the curve where the slope of the tangent
vector equals the slope of the secant line connecting the endpoints of the curve. This is a
“generalization” of the Mean Value Theorem from the graph of a one-variable function to any
curve in the plane.
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