MATH 242: Principles of Analysis

Homework Assignment #8

Partial Solutions

2. A great circle is a circle on a sphere whose center is the same as the center of the sphere. For
example, the equator is a great circle as is any circle passing through both the north and south
poles of a sphere. Two points on a sphere are antipodal if they are diametrically opposite. For
example, the north and south poles are antipodal points. Show that, at any given moment in
time, there are two antipodal points with the same temperature on any great circle around
the Earth. You may assume that the temperature function 7" is continuous.

Proof: Suppose that T'(z) is a continuous function on a circle. We can identify the circle
(regardless of its size) with the closed interval [0, 27] in the natural way, assuming that 7'(27) =
T(0). We want to show that there exists a number ¢ € [0, 7] such that T'(c+ m) = T'(c). We
can restrict to [0, 7] by symmetry. Any solution in the bottom half of the circle [m, 27| will
have an antipodal point in the top half [0, 7].

Consider the function f(x) = T'(z+m) —T'(z) on the closed interval [0, 7]. Note that T'(z+7)
is continuous as the composition of continuous functions and consequently, f is continuous as
the difference of continuous functions. We have that f(0) = T'(7) — T'(0) and that f(m) =
T(2r) —T(m) = T(0) — T(r) = —f(0). If f(0) = 0, then T(r) = T'(0) and ¢ = 0 is the
solution we seek. If f(0) # 0, then f(0) and f(m) have opposite signs. By the Intermediate
Value Theorem, there exists a ¢ € (0,7) such that f(c) = 0. This implies T'(c +7) = T'(c) as
desired.

4.3.2 (a) Proof: Let ¢ > 0 be given. Since g is continuous at f(c) € B, 36, > 0 such that
ly — f(c)| < 01 implies |g(y) — g(f(c))| < e. Since f is continuous at ¢, 30 > 0 such that
|z—c| < ¢ implies |f(x)— f(c)| < &; (treating d; as an “epsilon” in the definition of continuity).
Putting the two statements together, we have

[ — | < & implies |f(z) — f(c)] < & implies |g(f(x)) — g(f(c))] < ¢

as desired.

(b) Proof: Let {z,} be an arbitrary sequence converging to ¢ with z,, € A ¥n € N. Since
[ is continuous at ¢, the sequence {f(z,)} converges to f(c) (using Thm. 4.3.2, part (iv)).
Since g is continuous at f(c) and since {f(z,)} is a sequence in the domain of g converging
to f(c), we have that the sequence {g(f(z,))} converges to g(f(c)). Since {z,} was arbitrary,
we have shown that g o f is continuous at ¢ by Thm. 4.3.2, part (iv).

3.3.1 Proof: Suppose that K is a compact set. By the Heine-Borel Theorem, we know that K
is both closed and bounded. Since K is bounded above, the sup K exists by the Axiom of
Completeness. This in turn implies that the inf K exists, using problem #1 on HW #2.
Let s = sup K and let ¢, = 1/n. By the Sup Lemma (Lemma 1.3.7), 3z, € K such that
s— €, <z, < s Vn € N. Using the Squeeze Theorem for Sequences, since both {s} and



{s — €, } converge to s, we have that x,, — s. Thus, by definition, s is a limit point of K.
Since K is closed it contains its limit points, and in particular, s € K.

A similar argument works for « = inf K. By our Inf Lemma, Jy, € K such that u <y, <
u+ €, Yn € N. Using the Squeeze Theorem for Sequences, since both {u} and {u + €,}
converge to u, we have that y, — u. Thus, by definition, u is a limit point of K. Since K is
closed it contains its limit points, and in particular, u € K.

4.4.3 Proof: Suppose that f is a continuous function on a compact set K. Since continuous
functions take compact sets to compact sets, f(K) is a compact set. By the previous problem,
s =sup(f(K)) and v = inf(f(K)) exist and are contained in the set f(K). This means there
exists 1 € K with s = f(z1) and xy € K with v = f(x), by the definition of f(K).
By the definition of supremum part (i), s is an upper bound for f(K’). This means that
s > f(x) Yo € K. Similarly, by the definition of infimum part (i), u is a lower bound for
f(K). This means that u < f(z) Vo € K. Putting it all together, we have shown there exists
xg, r1 € K such that f(zo) < f(z) < f(x1) Vo € K. This proves the Extreme Value Theorem.

4.4.4 Proof: Suppose that f is continuous on the interval [a,b] with f(z) > 0 Vz € [a,b]. By
the Extreme Value Theorem, f attains a minimum m for some ¢ € [a,b]. The fact that
f(z) > 0 Vz € [a,b] implies that m > 0. Therefore, we have that f(z) > m Vz € [a,b].
Multiplying both sides of this inequality by the positive quantity 1/(mf(x)) yields 1/m >
1/f(x) Yz € [a,b]. Set M = 1/m > 0. Since |1/f(x)| = 1/f(x), we have shown that
|1/f(z)| < M Vz € [a,b]. This shows that 1/f is bounded on [a, b].



