MATH 242: Principles of Analysis

Homework Assignment #7

Partial Solutions

1. Use the €-0 definition for the limit of a function to prove the following limits:
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Preamble: We compute that
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We can make the |z — 3| term as small as we like by choosing § appropriately. We need
to bound the 1/|7z — 3| term. To do this, set § = 1. Then 0 < |z — 3] < 1 implies
2 < x < 4. On this interval, the function 1/|7z — 3| is decreasing and has a supremum
of 1/11. Thus we can bound |f(x) — L| by (3/22)|z — 3|. Choosing § < (22/3)e will then
suffice.

Proof: Let ¢ > 0 be given. Choose 6 = min{1, (22/3)e}. Then,
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Proof: Let ¢ > 0 be given. Choose 6 = €. Then, using |sin(1/z)| < 1Vz € R — {0}, we

have
) 1
x sin (—) —O‘ = |z|-
x

4.2.6 Proof: Let ¢ > 0 be given. Since lim g(z) = 0, there exists a 6 > 0 such that
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sin (—)‘ < |z| < € whenever 0 < |z| < ¢ .
T

lg(z) — 0] = |g(x)] < % whenever 0 < |z —¢| <0 .



Here we are treating /M as a particular “epsilon” in the definition of the limit of the function
g(x). Then, we have

l9(2) f(z) = 0] = |g(x)| - |f(z)] < M-|g(z)| < M‘% = ¢ whenever 0 < |z —c| <9 .

4.2.9 (Squeeze Theorem)

There are two possible proofs, one using the e-¢ version of limits, the other using the sequential
characterization of limits. The latter seems to be the most straight-forward.

Proof: Let {z,} be an arbitrary sequence contained in A that converges to ¢ such that
x, # ¢ ¥n € N. Applying Thm. 4.2.3, we must show that the sequence {g(x,)} converges to
L. Since lim f(z) = L, we know that the sequence {f(x,)} converges to L using Thm. 4.2.3.
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Similarly, since lim h(x) = L, we know that the sequence {h(x,)} converges to L, using Thm.

4.2.3 yet again. We are given that f(x) < g(z) < h(z) Vx € A. Since {z,} C A, we have that
f(z) < g(z,) < h(z,) Yn € N. Using the Squeeze Theorem for sequences, it follows that
{g(x,)} converges to L, as desired.

4.3.6 Let g(x) be Dirichlet’s function. There are two possible arguments to show that ¢ is not
continuous at any real number. One is to use the topological characterization of continuity.
Another approach is to use the sequential characterization, making two distinct arguments for
when x € Q and = € Q. Both arguments rely on the fact that the rationals and irrationals are
each dense in R. We use the topological characterization of continuity, Thm 4.3.2, part (iii).

Proof: Pick ¢ € R arbitrarily. Let ¢ = 1/2. Negating property (iii) in Thm. 4.3.2, we must
show that Vo > 0, f(Vs(c)) € Ve(g(c)). In other words, ¥é > 0, we must find an = € Vj(c))
such that g(x) € Vis2(g(c)). If ¢ € Q, then since the irrationals are dense in R, for any
d > 0, there exists an irrational z € Vs(c). We have g(c) = 1 but g(z) = 0. Therefore,
9(x) =0 & Vipa(g(c)) = Vipa(1) = (1/2,3/2).

The argument is similar for ¢ € Q. Since the rationals are dense in R, for any § > 0, there
exists a rational x € Vs(c). We then have g(c¢) = 0 but g(z) = 1. Therefore, g(z) = 1 ¢
Vija(g(c)) = Vipa(0) = (=1/2,1/2).

Since ¢ was arbitrary, this shows that the Dirichlet function is nowhere-continuous on R.

4.3.8 (a) Proof: We first show that given any irrational number ¢, we can construct a sequence
of rationals {x,} converging to c¢. Let €, = 1/n. Then, for each ¢,, there exists a rational z,,
satisfying ¢ — €, < x, < ¢+ €, since the rationals are dense in R. Since ¢, — 0 as n — o0, it
is straight-forward to show that x, — ¢, as desired.

Suppose that f is a function continuous on all of R with f(z) = 0 at any rational number z.
Let ¢ be an arbitrary irrational number and let {x,} be a sequence of rationals converging to
c. Then, since f is continuous, we have

fle) = f( nll_{go:vn) = lim f(z,) = lim 0 = 0.
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Since ¢ was arbitrary, this shows that f(z) =0 Vz € R.

2



(b) Yes. Proof: Suppose that f and g are continuous on all of R and f(x) = g(x) for any
rational number z. Consider the function h = f — g. Then, h is continuous on all of R since
it is the difference of two continuous functions and h(z) = 0 for any rational number z. By
part (a), this means that h(z) =0 Vz € R which in turn implies that f(x) = g(z) Vz € R.



