MATH 242: Principles of Analysis

Homework Assignment #7

Partial Solutions

1. Use the ϵ - δ definition for the limit of a function to prove the following limits:

(a)
$$\lim_{x\to 3} \frac{2x+3}{7x-3} = \frac{1}{2}$$

Preamble: We compute that

$$\left| \frac{2x+3}{7x-3} - \frac{1}{2} \right| = \left| \frac{-3x+9}{2(7x-3)} \right| = \frac{3}{2} \cdot \frac{|x-3|}{|7x-3|} .$$

We can make the |x-3| term as small as we like by choosing δ appropriately. We need to bound the 1/|7x-3| term. To do this, set $\delta=1$. Then 0<|x-3|<1 implies 2< x<4. On this interval, the function 1/|7x-3| is decreasing and has a supremum of 1/11. Thus we can bound |f(x)-L| by (3/22)|x-3|. Choosing $\delta \leq (22/3)\epsilon$ will then suffice.

Proof: Let $\epsilon > 0$ be given. Choose $\delta = \min\{1, (22/3)\epsilon\}$. Then,

$$\left| \frac{2x+3}{7x-3} - \frac{1}{2} \right| = \left| \frac{-3x+9}{2(7x-3)} \right|$$

$$= \frac{3}{2} \cdot \frac{|x-3|}{|7x-3|}$$

$$< \frac{3}{22} \cdot |x-3| \quad \text{since } \delta \le 1$$

$$< \frac{3}{22} \cdot \frac{22}{3} \epsilon \quad \text{since } \delta \le \frac{22}{3} \epsilon$$

$$= \epsilon \quad \text{whenever } 0 < |x-3| < \delta.$$

(b)
$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

Proof: Let $\epsilon > 0$ be given. Choose $\delta = \epsilon$. Then, using $|\sin(1/x)| \le 1 \ \forall x \in \mathbb{R} - \{0\}$, we have

$$\left| x \sin \left(\frac{1}{x} \right) - 0 \right| = |x| \cdot \left| \sin \left(\frac{1}{x} \right) \right| \le |x| < \epsilon \text{ whenever } 0 < |x| < \delta.$$

4.2.6 Proof: Let $\epsilon > 0$ be given. Since $\lim_{x \to c} g(x) = 0$, there exists a $\delta > 0$ such that

$$|g(x) - 0| = |g(x)| < \frac{\epsilon}{M}$$
 whenever $0 < |x - c| < \delta$.

1

Here we are treating ϵ/M as a particular "epsilon" in the definition of the limit of the function g(x). Then, we have

$$|g(x)f(x)-0| \ = \ |g(x)|\cdot|f(x)| \ \leq \ M\cdot|g(x)| \ < \ M\cdot\frac{\epsilon}{M} \ = \ \epsilon \quad \text{whenever} \ 0<|x-c|<\delta \ .$$

4.2.9 (Squeeze Theorem)

There are two possible proofs, one using the ϵ - δ version of limits, the other using the sequential characterization of limits. The latter seems to be the most straight-forward.

Proof: Let $\{x_n\}$ be an arbitrary sequence contained in A that converges to c such that $x_n \neq c \ \forall n \in \mathbb{N}$. Applying Thm. 4.2.3, we must show that the sequence $\{g(x_n)\}$ converges to L. Since $\lim_{x\to c} f(x) = L$, we know that the sequence $\{f(x_n)\}$ converges to L using Thm. 4.2.3. Similarly, since $\lim_{x\to c} h(x) = L$, we know that the sequence $\{h(x_n)\}$ converges to L, using Thm. 4.2.3 yet again. We are given that $f(x) \leq g(x) \leq h(x) \ \forall x \in A$. Since $\{x_n\} \subseteq A$, we have that $f(x_n) \leq g(x_n) \leq h(x_n) \ \forall n \in \mathbb{N}$. Using the Squeeze Theorem for sequences, it follows that $\{g(x_n)\}$ converges to L, as desired.

4.3.6 Let g(x) be Dirichlet's function. There are two possible arguments to show that g is not continuous at any real number. One is to use the topological characterization of continuity. Another approach is to use the sequential characterization, making two distinct arguments for when $x \in \mathbb{Q}$ and $x \notin \mathbb{Q}$. Both arguments rely on the fact that the rationals and irrationals are each dense in \mathbb{R} . We use the topological characterization of continuity, Thm 4.3.2, part (iii).

Proof: Pick $c \in \mathbb{R}$ arbitrarily. Let $\epsilon = 1/2$. Negating property (iii) in Thm. 4.3.2, we must show that $\forall \delta > 0$, $f(V_{\delta}(c)) \not\subseteq V_{\epsilon}(g(c))$. In other words, $\forall \delta > 0$, we must find an $x \in V_{\delta}(c)$ such that $g(x) \notin V_{1/2}(g(c))$. If $c \in \mathbb{Q}$, then since the irrationals are dense in \mathbb{R} , for any $\delta > 0$, there exists an irrational $x \in V_{\delta}(c)$. We have g(c) = 1 but g(x) = 0. Therefore, $g(x) = 0 \notin V_{1/2}(g(c)) = V_{1/2}(1) = (1/2, 3/2)$.

The argument is similar for $c \notin \mathbb{Q}$. Since the rationals are dense in \mathbb{R} , for any $\delta > 0$, there exists a rational $x \in V_{\delta}(c)$. We then have g(c) = 0 but g(x) = 1. Therefore, $g(x) = 1 \notin V_{1/2}(g(c)) = V_{1/2}(0) = (-1/2, 1/2)$.

Since c was arbitrary, this shows that the Dirichlet function is nowhere-continuous on \mathbb{R} .

4.3.8 (a) **Proof:** We first show that given any irrational number c, we can construct a sequence of rationals $\{x_n\}$ converging to c. Let $\epsilon_n = 1/n$. Then, for each ϵ_n , there exists a rational x_n satisfying $c - \epsilon_n < x_n < c + \epsilon_n$ since the rationals are dense in \mathbb{R} . Since $\epsilon_n \to 0$ as $n \to \infty$, it is straight-forward to show that $x_n \to c$, as desired.

Suppose that f is a function continuous on all of \mathbb{R} with f(x) = 0 at any rational number x. Let c be an arbitrary irrational number and let $\{x_n\}$ be a sequence of rationals converging to c. Then, since f is continuous, we have

$$f(c) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 0 = 0.$$

Since c was arbitrary, this shows that $f(x) = 0 \ \forall x \in \mathbb{R}$.

(b) Yes. **Proof:** Suppose that f and g are continuous on all of \mathbb{R} and f(x) = g(x) for any rational number x. Consider the function h = f - g. Then, h is continuous on all of \mathbb{R} since it is the difference of two continuous functions and h(x) = 0 for any rational number x. By part (a), this means that $h(x) = 0 \ \forall x \in \mathbb{R}$ which in turn implies that $f(x) = g(x) \ \forall x \in \mathbb{R}$.