
MATH 242: Principles of Analysis

Homework Assignment #7

Partial Solutions

1. Use the ε-δ definition for the limit of a function to prove the following limits:

(a) lim
x→3

2x+ 3

7x− 3
=

1

2

Preamble: We compute that∣∣∣∣2x+ 3

7x− 3
− 1

2

∣∣∣∣ =

∣∣∣∣ −3x+ 9

2(7x− 3)

∣∣∣∣ =
3

2
· |x− 3|
|7x− 3|

.

We can make the |x− 3| term as small as we like by choosing δ appropriately. We need
to bound the 1/|7x − 3| term. To do this, set δ = 1. Then 0 < |x − 3| < 1 implies
2 < x < 4. On this interval, the function 1/|7x − 3| is decreasing and has a supremum
of 1/11. Thus we can bound |f(x)−L| by (3/22)|x− 3|. Choosing δ ≤ (22/3)ε will then
suffice.

Proof: Let ε > 0 be given. Choose δ = min{1, (22/3)ε}. Then,∣∣∣∣2x+ 3
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3

22
· |x− 3| since δ ≤ 1
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3

22
· 22

3
ε since δ ≤ 22

3
ε

= ε whenever 0 < |x− 3| < δ .

(b) lim
x→0

x sin

(
1

x

)
= 0

Proof: Let ε > 0 be given. Choose δ = ε. Then, using | sin(1/x)| ≤ 1 ∀x ∈ R− {0}, we
have ∣∣∣∣x sin

(
1

x

)
− 0

∣∣∣∣ = |x| ·
∣∣∣∣sin (

1

x

)∣∣∣∣ ≤ |x| < ε whenever 0 < |x| < δ .

4.2.6 Proof: Let ε > 0 be given. Since lim
x→c

g(x) = 0, there exists a δ > 0 such that

|g(x)− 0| = |g(x)| < ε

M
whenever 0 < |x− c| < δ .
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Here we are treating ε/M as a particular “epsilon” in the definition of the limit of the function
g(x). Then, we have

|g(x)f(x)− 0| = |g(x)| · |f(x)| ≤ M · |g(x)| < M · ε
M

= ε whenever 0 < |x− c| < δ .

4.2.9 (Squeeze Theorem)

There are two possible proofs, one using the ε-δ version of limits, the other using the sequential
characterization of limits. The latter seems to be the most straight-forward.

Proof: Let {xn} be an arbitrary sequence contained in A that converges to c such that
xn 6= c ∀n ∈ N. Applying Thm. 4.2.3, we must show that the sequence {g(xn)} converges to
L. Since lim

x→c
f(x) = L, we know that the sequence {f(xn)} converges to L using Thm. 4.2.3.

Similarly, since lim
x→c

h(x) = L, we know that the sequence {h(xn)} converges to L, using Thm.

4.2.3 yet again. We are given that f(x) ≤ g(x) ≤ h(x) ∀x ∈ A. Since {xn} ⊆ A, we have that
f(xn) ≤ g(xn) ≤ h(xn) ∀n ∈ N. Using the Squeeze Theorem for sequences, it follows that
{g(xn)} converges to L, as desired.

4.3.6 Let g(x) be Dirichlet’s function. There are two possible arguments to show that g is not
continuous at any real number. One is to use the topological characterization of continuity.
Another approach is to use the sequential characterization, making two distinct arguments for
when x ∈ Q and x 6∈ Q. Both arguments rely on the fact that the rationals and irrationals are
each dense in R. We use the topological characterization of continuity, Thm 4.3.2, part (iii).

Proof: Pick c ∈ R arbitrarily. Let ε = 1/2. Negating property (iii) in Thm. 4.3.2, we must
show that ∀δ > 0, f(Vδ(c)) 6⊆ Vε(g(c)). In other words, ∀δ > 0, we must find an x ∈ Vδ(c))
such that g(x) 6∈ V1/2(g(c)). If c ∈ Q, then since the irrationals are dense in R, for any
δ > 0, there exists an irrational x ∈ Vδ(c). We have g(c) = 1 but g(x) = 0. Therefore,
g(x) = 0 6∈ V1/2(g(c)) = V1/2(1) = (1/2, 3/2).

The argument is similar for c 6∈ Q. Since the rationals are dense in R, for any δ > 0, there
exists a rational x ∈ Vδ(c). We then have g(c) = 0 but g(x) = 1. Therefore, g(x) = 1 6∈
V1/2(g(c)) = V1/2(0) = (−1/2, 1/2).

Since c was arbitrary, this shows that the Dirichlet function is nowhere-continuous on R.

4.3.8 (a) Proof: We first show that given any irrational number c, we can construct a sequence
of rationals {xn} converging to c. Let εn = 1/n. Then, for each εn, there exists a rational xn
satisfying c− εn < xn < c+ εn since the rationals are dense in R. Since εn → 0 as n→∞, it
is straight-forward to show that xn → c, as desired.

Suppose that f is a function continuous on all of R with f(x) = 0 at any rational number x.
Let c be an arbitrary irrational number and let {xn} be a sequence of rationals converging to
c. Then, since f is continuous, we have

f(c) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

0 = 0.

Since c was arbitrary, this shows that f(x) = 0 ∀x ∈ R.
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(b) Yes. Proof: Suppose that f and g are continuous on all of R and f(x) = g(x) for any
rational number x. Consider the function h = f − g. Then, h is continuous on all of R since
it is the difference of two continuous functions and h(x) = 0 for any rational number x. By
part (a), this means that h(x) = 0 ∀x ∈ R which in turn implies that f(x) = g(x) ∀x ∈ R.
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