
MATH 242: Principles of Analysis

Homework Assignment #5

Partial Solutions

1. For each of the infinite series below, determine whether the series converges or diverges. Be sure
to state which test you are applying and to verify the hypotheses of the test.

b)
∞∑

n=1

n!

nn
This series converges using the ratio test. We have that

lim
n→∞

|an+1|
|an|

= lim
n→∞

(n+ 1)!nn

n! (n+ 1)n+1

= lim
n→∞

nn

(n+ 1)n

= lim
n→∞

(
n

n+ 1

)n

= lim
n→∞

(
n+ 1

n

)−n

= lim
n→∞

(
1 +

1

n

)−n

= lim
n→∞

((
1 +

1

n

)n)−1

= e−1 < 1.

d)
∞∑

n=1

(−1)n+1
√
n

n+ 1
This series converges using the Alternating Series Test. Let an =

√
n

n+1
.

We must show that {an} is a decreasing sequence that converges to zero.

To show the sequence is decreasing, we must show that

√
n

n+ 1
≥
√
n+ 1

n+ 2
. (1)

Squaring both sides of equation (1) preserves the inequality since both sides are positive
for any n ∈ N. This means that equation (1) is equivalent to

n

(n+ 1)2
≥ n+ 1

(n+ 2)2

or
n

(n+ 1)2
− n+ 1

(n+ 2)2
≥ 0.
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Combining the two fractions, the previous inequality becomes

n(n+ 2)2 − (n+ 1)3

(n+ 1)2(n+ 2)2
≥ 0

or
n2 + n− 1

(n+ 1)2(n+ 2)2
≥ 0.

Since this is clearly valid for n ≥ 1, we have shown that {an} is decreasing.

Next, we show that lim
n→∞

an = 0 using the BLT for sequences. We have

lim
n→∞

√
n

n+ 1
= lim

n→∞

√
n/n

(n+ 1)/n

= lim
n→∞

1/
√
n

1 + 1/n

=
limn→∞ 1/

√
n

limn→∞(1 + 1/n)
applying BLT since the limits on top and bottom exist

=
0

1 + 0
= 0.

Therefore, by the Alternating Series Test, this series converges. Note that the series is
only conditionally convergent, as taking all terms positive gives a series close to one with
an = n−1/2 which diverges by the p-series test.

2. Use the Cauchy Condensation Test to show that the series
∞∑

n=2

1

n lnn
diverges.

We have an = 1/(n lnn). Note that since n and lnn are increasing functions of n, an is
a decreasing sequence of non-negative terms. Applying the Cauchy Condensation Test, we
compute

2na2n =
2n

2n ln 2n
=

1

ln 2n
=

1

n · ln 2
.

By contradiction, if the infinite series
∞∑

n=2

1

n · ln 2
converged, then by the BLT for series part

(i), so would the infinite series
∞∑

n=2

ln 2 · 1

n · ln 2
=
∞∑

n=2

1

n
. But this last series is the harmonic

series, which diverges (a contradiction.) Therefore, the series obtained by applying the Cauchy
Condensation Test diverges and therefore, the original series also diverges.

2.5.3 (c) Using a method similar to how we counted the rationals, consider the sequence:

1, 1/2, 1, 1/2, 1/3, 1, 1/2, 1/3, 1/4, 1, 1/2, 1/3, 1/4, 1/5, . . . .

This sequence will eventually contain every term of the form 1/n, n ∈ N and it will contain
it infinitely often. Thus, there will be subsequences converging to each element in the set
{1, 1/2, 1/3, 1/4, 1/5, . . .}, as desired.
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(e) This is impossible using the Bolzano-Weierstrass Theorem (BWT). Suppose the sequence
{xn} contains a bounded subsequence {xnk

}. By the definition of a subsequence, {xnk
} is

itself a sequence with k as the index. Let’s rename it {yk}. Since {yk} is bounded, it contains
a convergent subsequence {ykj

} by the BWT. The sequence {ykj
} contains terms (chosen in

increasing order) from the original sequence {xn} and is thus a convergent subsequence of the
original sequence. In other words, the subsequence of a subsequence is also a subsequence
of the original sequence. Thus it is not possible to construct a sequence with a bounded
subsequence and containing no convergent subsequence.

2.7.4 Let xn = 1/n and yn = 1/n. Then both infinite series
∑
xn and

∑
yn diverge (harmonic

series), yet
∑
xnyn =

∑
1/n2 is convergent, as proved in class.

Another example is xn = 1/n and yn = 1/
√
n.

2.7.8 Suppose that
∞∑

k=1

ak = A and
∞∑

k=1

bk = B. Show that
∞∑

k=1

(ak + bk) = A+B.

Proof: Let sn = a1 + a2 + · · ·+ an and tn = b1 + b2 + · · ·+ bn be the nth partial sums for the
series

∑
ak and

∑
bk, respectively. Consider the nth partial sum for the series

∑
(ak + bk),

which is

un = (a1 + b1) + (a2 + b2) + · · ·+ (an + bn) = (a1 +a2 + · · ·+an) + (b1 + b2 + · · ·+ bn) = sn + tn.

Using the BLT for sequences, part (ii), we have

lim
n→∞

un = lim
n→∞

(sn + tn) = lim
n→∞

sn + lim
n→∞

tn = A+B,

where the last step follows from the definition of convergence of an infinite series. Then,

lim
n→∞

un = A+B shows that
∞∑

k=1

(ak + bk) = A+B, as desired.

2.7.9 (Proving the Ratio Test)

(a) Choose r′ = (r + 1)/2. Then r < r′ < 1. Let ε = r′ − r > 0. By the definition of

convergence of a sequence, since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = r, there exists an N ∈ N such that

∣∣∣∣∣∣∣∣an+1

an

∣∣∣∣− r∣∣∣∣ < ε ∀n ≥ N.

This implies that
|an+1|
|an|

< r + ε = r′ ∀n ≥ N,

which shows that |an+1| ≤ |an|r′ ∀n ≥ N . This shows that eventually, the next term in
the series is smaller than r′ times the previous term, allowing us to compare to a convergent
geometric series.
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(b) The infinite series
∑

(r′)n is a geometric series with ratio r′ < 1, and thus converges.
Multiplying the series by the constant |aN | does not alter its convergence (BLT for series,
part (i)).

(c) We first show by induction that |aN+m| ≤ |aN |(r′)m for any m ∈ N. The base case is
simply |aN+1| ≤ |aN |r′ which follows from the fact proven in part (a), choosing n = N . For the
inductive step, assume that |aN+k| ≤ |aN |(r′)k. We must show that |aN+k+1| ≤ |aN |(r′)k+1.
We have

|aN+k+1| = |a(N+k)+1| ≤ |aN+k|r′ ≤ |aN |(r′)k · r′ = |aN |(r′)k+1

where the first inequality follows from part (a) and the second from the inductive hypothesis.
This proves that |aN+m| ≤ |aN |(r′)m for any m ∈ N.

Next, we write
∞∑

n=1

|an| =
N∑

n=1

|an| +
∞∑

m=1

|aN+m|.

The first sum is finite and thus does not effect the convergence of the infinite series. By the
fact just proved, the terms of the second series are less than or equal to the terms of the
convergent geometric series

∑
|aN |(r′)m. By the comparison test, our series converges. �
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