
MATH 242: Principles of Analysis

Homework Assignment #4

Partial Solutions

1. Prove that the sequence xn =
1

8
sin(

nπ

2
) diverges.

Proof: Suppose by contradiction that the sequence {xn} converges to L. Let ǫ = 1/20. By
the definition of convergence, there exists an N ∈ N such that |xn − L| < 1/20 ∀n ≥ N .

First, choose n ∈ {4k − 3 : k ∈ N} and such that n ≥ N . For this particular n, we have
xn = 1/8. Since n ≥ N , we also have that |1/8 − L| < 1/20. Next, choose m ∈ {2k : k ∈ N}
and such that m ≥ N . For this particular m, we have xm = 0. Since m ≥ N , we also have
that |0 − L| < 1/20 from the definition of convergence.

Now apply the triangle inequality. We have that

1/8 = |(1/8 − L) + (L − 0)| ≤ |1/8 − L| + |0 − L| < 1/20 + 1/20 = 1/10.

Since 1/8 6< 1/10, we have arrived at a contradiction and the sequence diverges.

2. Prove that if the limit of a sequence exists, then it is unique. (See class notes from 9/24.)

Proof: By contradiction, suppose that xn → L1 and xn → L2 with L1 6= L2. Let ǫ =
|L1 − L2| > 0. By the definition of convergence applied to xn → L1, there exists an N1 ∈ N

such that |xn−L1| < ǫ/3 ∀n ≥ N1. (Note that here we are using ǫ/3 as a particular “epsilon” in
the definition of convergence.) Similarly, by the definition of convergence applied to xn → L2,
there exists an N2 ∈ N such that |xn − L2| < ǫ/3 ∀n ≥ N2. Let N = max{N1, N2}. Pick
an n ≥ N . Then both inequalities |xn − L1| < ǫ/3 and |xn − L2| < ǫ/3 are valid. Using the
triangle inequality, we have

ǫ = |L1 − L2| ≤ |L1 − xn| + |xn − L2| < ǫ/3 + ǫ/3 = 2ǫ/3.

But since ǫ 6< 2ǫ/3, we have arrived at a contradiction and L1 = L2. This shows that the
limit of a convergent sequence is unique.

4. Recall that the Fibonacci Series (Sequence) is defined by the recursive relation

Fn+2 = Fn+1 + Fn, F1 = 1, F2 = 1.

Let Gn =
Fn+1

Fn

be the sequence of ratios of consecutive Fibonacci numbers.

a) Prove that FnFn+2 − F 2
n+1 = (−1)n+1 ∀n ∈ N.

b) Prove that {G2n}∞n=1 is a decreasing sequence bounded below.

c) Prove that {G2n−1}∞n=1 is an increasing sequence bounded above.
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d) Prove that the sequence Gn converges and find its limit. Why did I choose G for this
sequence? (It is not because that’s my first initial!)

a) Proof: Use proof by induction. For the base case, let n = 1. We must verify that
F1F3 −F 2

2 = (−1)2. This is equivalent to 1 · 2− 12 = 1, which is true. For the induction step,
we assume that FkFk+2 − F 2

k+1 = (−1)k+1 for some k ∈ N and show that Fk+1Fk+3 − F 2
k+2 =

(−1)k+2. We have

Fk+1Fk+3 − F 2
k+2 = Fk+1(Fk+2 + Fk+1) − F 2

k+2 (by definition of the Fibonacci numbers)

= F 2
k+1 + Fk+1Fk+2 − F 2

k+2

= F 2
k+1 − Fk+2(Fk+2 − Fk+1)

= F 2
k+1 − Fk+2Fk (by definition of the Fibonacci numbers)

= −(FkFk+2 − F 2
k+1)

= (−1) · (−1)k+1 (using the inductive hypothesis)

= (−1)k+2 (rules of exponents).

By induction this proves that FnFn+2 − F 2
n+1 = (−1)n+1 ∀n ∈ N.

Notice that in this proof, we worked from the left-hand side of the equation we wanted to
prove and deduced it was equivalent to the right-hand side. This is better form than assuming

the equation is true to start with and then manipulating it into something else we know is
true.

b) Proof: The sequence {G2n}∞n=1 = G2, G4, G6, . . . is the sequence of every other Fibonacci
ratio beginning with G2. We will show G2n > G2(n+1) ∀n ∈ N directly. This is equivalent to
showing G2n − G2n+2 > 0. For any n ∈ N, we have

G2n − G2n+2 =
F2n+1

F2n

− F2n+3

F2n+2

=
F2n+1F2n+2 − F2nF2n+3

F2nF2n+2

=
F2n+1(F2n+1 + F2n) − F2n(F2n+2 + F2n+1)

F2nF2n+2
(by definition of Fn)

=
F 2

2n+1 − F2nF2n+2

F2nF2n+2

=
−(−1)2n+1

F2nF2n+2

(using the identity from part a))

=
1

F2nF2n+2

> 0.

This shows that G2n is decreasing.
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To show that {G2n}∞n=1 is bounded below, note that Gn > 0 ∀n ∈ N since the Fibonacci
numbers are all positive. A better lower bound comes from noticing that

Gn =
Fn+1

Fn

=
Fn + Fn−1

Fn

= 1 +
Fn−1

Fn

> 1 ∀n ≥ 2

with the last inequality following from the fact that all the Fibonacci numbers are positive.
Since Gn is bounded below so is the subsequence G2n.

c) Proof: The sequence {G2n−1}∞n=1 = G1, G3, G5, . . . is the sequence of every other Fibonacci
ratio beginning with G1. We will show that G2n−1 < G2n+1 ∀n ∈ N directly. This is equivalent
to showing G2n+1 − G2n−1 > 0. For any n ∈ N, we have

G2n+1 − G2n−1 =
F2n+2

F2n+1
− F2n

F2n−1

=
F2n−1F2n+2 − F2nF2n+1

F2n+1F2n−1

=
F2n−1(F2n+1 + F2n) − F2n(F2n + F2n−1)

F2n+1F2n−1

(by definition of Fn)

=
F2n−1F2n+1 − F 2

2n

F2n+1F2n−1

=
(−1)2n

F2n+1F2n−1
(using the identity from part a))

=
1

F2n+1F2n−1

> 0.

This shows that G2n−1 is increasing.

To show that {G2n−1}∞n=1 is bounded above, we have

Gn =
Fn+1

Fn

=
Fn + Fn−1

Fn

= 1 +
Fn−1

Fn

≤ 2 ∀n ≥ 2,

with the last inequality following from the fact that the Fibonacci numbers form an increasing
sequence (ie. Fn−1/Fn ≤ 1 ∀n ≥ 2.) Since Gn is bounded above, so is the subsequence G2n−1.

d) Proof: Now the fun part. By the Monotone Convergence Theorem, since both {G2n}
and {G2n−1} are bounded, monotone sequences, they each converge. Suppose that G2n → Le
and that G2n−1 → Lo. We first show that Le = Lo.

We will make use of an important fact. For any n ∈ N we have

G2n − G2n−1 =
F2n+1

F2n

− F2n

F2n−1
=

F2n−1F2n+1 − F 2
2n

F2nF2n−1
=

(−1)2n

F2nF2n−1
=

1

F2nF2n−1
.

Since Fn is an unbounded and increasing sequence, we can make the denominator of the
preceding fraction arbitrarily large and consequently, G2n − G2n−1 arbitrarily small.
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By contradiction, suppose that Le 6= Lo and let ǫ = |Le − Lo|. Since G2n → Le, there exists
an N1 ∈ N such that |G2n − Le| < ǫ/4 ∀n ≥ N1. Likewise, since G2n−1 → Lo, there exists an
N2 ∈ N such that |G2n−1 − Lo| < ǫ/4 ∀n ≥ N2. Finally, by our useful fact above, there exists
an N3 ∈ N such that |G2n − G2n−1| < ǫ/4 ∀n ≥ N3. Let N = max{N1, N2, N3} and pick any
n ≥ N . Then, by the triangle inequality,

ǫ = |Le − Lo| ≤ |Le − G2n| + |G2n − G2n−1| + |G2n−1 − Lo| < ǫ/4 + ǫ/4 + ǫ/4 = 3ǫ/4.

But this implies ǫ < 3ǫ/4, a clear contradiction. Therefore, Le = Lo.

Let G = Le = Lo. It is straight-forward to show that this is also the limit of the full
sequence Gn. Let ǫ > 0 be given. Since G2n → G, there exists an N1 ∈ N such that
|G2n − G| < ǫ ∀n ≥ N1. Likewise, since G2n−1 → G, there exists an N2 ∈ N such that
|G2n−1 − G| < ǫ ∀n ≥ N2. Let N = max{2N1, 2N2 − 1}. Then, for any even n ≥ N , we have
|Gn − G| < ǫ. But we also have that for any odd n ≥ N , |Gn − G| < ǫ. Together, this shows
that |Gn − G| < ǫ ∀n ≥ N and therefore, the sequence {Gn} converges.

Finally, to find the value of the special number G we note that

Gn =
Fn+1

Fn

=
Fn + Fn−1

Fn

= 1 +
Fn−1

Fn

= 1 +
1

Gn−1
.

Taking the limit of both sides, applying the Big Limit Theorem and using the fact that
limn→∞

Gn−1 = G (shifting back one step doesn’t effect the limit), we find that the limit G
satisfies the equation

G = 1 + 1/G.

Multiplying through by G gives the quadratic equation G2 − G − 1 = 0. This has roots
(1 ±

√
5)/2. We throw out the negative root because Gn > 0 ∀n ∈ N. Thus, we have

finally proven that the ratio of consecutive Fibonacci numbers converges to the Golden ratio

(1 +
√

5)/2. Cool!

2.3.3 (Squeeze Theorem) Suppose we have three sequences {xn}, {yn}, {zn} satisfying xn ≤
yn ≤ zn ∀n ∈ N. Suppose further that xn → L and zn → L. Show that yn converges to L as
well.

Note: |yn − L| < ǫ is equivalent to L − ǫ < yn < L + ǫ. This can be seen by interpreting
“|yn − L| < ǫ” as the distance between the two points yn and L on the number line must be
less than ǫ. Algebraically, it can be derived quickly using the definition of absolute value.

Proof: Let ǫ > 0 be given. Since zn → L, there exists an N1 ∈ N such that |zn −L| < ǫ ∀n ≥
N1. By the note above, this implies that zn < L + ǫ whenever n ≥ N1. Since yn ≤ zn ∀n ∈ N,
we have

yn < L + ǫ whenever n ≥ N1. (1)

Similarly, since xn → L, there exists an N2 ∈ N such that |xn − L| < ǫ ∀n ≥ N2. By the note
above, this implies that L − ǫ < xn whenever n ≥ N2. Since xn ≤ yn ∀n ∈ N, we have

L − ǫ < yn whenever n ≥ N2. (2)
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Let N = max{N1, N2}. If n ≥ N , then both inequalities (1) and (2) are satisfied. Therefore,
we have L − ǫ < yn < L + ǫ whenever n ≥ N which is equivalent to |yn − L| < ǫ ∀n ≥ N .
This shows that yn → L. �

2.3.7 (a) Suppose that {an} is a bounded (not necessarily convergent) sequence and that {bn} is a
convergent sequence with limit L = 0. Show that {anbn} is a convergent sequence with limit
L = 0.

Note: We are not allowed to apply the Big (Algebraic) Limit Theorem here because we don’t
know that limn→∞

an exists. For example, if an = n2 and bn = 1/n, then bn → 0 but anbn = n
diverges. In order to apply BLT, the limits of the smaller sequences must exist.

Proof: Let ǫ > 0 be given. (Notice that all convergence proofs using the definition start this
way!) Since an is a bounded sequence, there exists an M > 0 such that |an| ≤ M ∀n ∈ N.
Since bn → 0, there exists an N ∈ N such that |bn − 0| < ǫ/M whenever n ≥ N , using the
definition of convergence. (Note that here we are using ǫ/M as the “epsilon” in the definition
of convergence.)

Punchline:

|anbn − 0| = |anbn| = |an| · |bn| ≤ M · |bn| < M · ǫ/M = ǫ ∀n ≥ N �.

(b) Suppose that {bn} is a sequence such that bn → b with b 6= 0. What can we conclude, if
anything, about the convergence of the sequence {anbn}?

Answer: This sequence diverges unless limn→∞
an exists. If an → a, then anbn → ab by BLT

part (iii). However, suppose {an} diverges. If {anbn} was convergent to some limit L, then
by BLT part (iv) we would have

lim
n→∞

an = lim
n→∞

anbn

bn

=
lim

n→∞

anbn

lim
n→∞

bn

=
L

b

which implies that {an} converges. Note that we can apply BLT part (iv) here because b 6= 0.
This contradicts our assumption. Therefore, {anbn} is divergent whenever {an} is divergent
and b 6= 0.

2.3.8 (a) Let an = n and bn = −n. Each of these diverge but their sum an+bn = 0 is the convergent
constant sequence of zeroes.

(b) This is impossible. Suppose by contradiction that the sequence {xn + yn} converges to
some limit L. Let x be the limit of the convergent sequence {xn}. Then, by the Big Limit
Theorem parts (i) and (ii), we have

lim
n→∞

yn = lim
n→∞

(−xn + (xn + yn)) = − lim
n→∞

xn + lim
n→∞

(xn + yn) = −x + L (exists.)

But this contradicts the fact that {yn} was assumed to be divergent. Therefore, {xn + yn}
must be divergent.
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(c) Let bn = 1/n. Then bn 6= 0 ∀n ∈ N and {bn} is a convergent sequence with limit 0.
However, 1/bn = n is a divergent sequence.

(d) This is impossible. Suppose by contradiction that {an − bn} is a bounded sequence. This
means there exists an M1 > 0 such that |an − bn| ≤ M1 ∀n ∈ N. Since {bn} is convergent, it
is also bounded by Thm. 2.3.2. Thus, there exists an M2 > 0 such that |bn| ≤ M2 ∀n ∈ N.
Using the triangle inequality, we have

|an| = |(an − bn) + bn| ≤ |an − bn| + |bn| ≤ M1 + M2 ∀n ∈ N.

But this contradicts the fact that {an} is unbounded. Therefore, {an − bn} is an unbounded
sequence.

(e) Let an = 1/n and bn = n. Then {an} converges to 0 and {bn} diverges. However, anbn = 1
is a convergent sequence.

2.4.2 (a) Proof: We first show that the sequence is bounded above by 3 using induction (we
will need this to show rigorously that the sequence is decreasing.) Show xn ≤ 3 ∀n ∈ N.
The base case is satisfied since x1 = 3 ≤ 3. Next, assume that xk ≤ 3. We must show that
xk+1 ≤ 3. Starting with xk ≤ 3, multiply both sides by −1 and add 4. This gives 4− xk ≥ 1.
Dividing both sides of this inequality by the positive number 4 − xk yields 1 ≥ 1/(4 − xk) or
xk+1 ≤ 1 ≤ 3 as desired.

Now we can show that the sequence is decreasing using induction. For the base case, we have
to show x1 > x2. Since x1 = 3 and x2 = 1 this is verified. Next, assume that xk > xk+1. We
must show that xk+1 > xk+2. Starting with the assumption that xk > xk+1, multiply by −1
and add 4 to both sides. This gives 4 − xk < 4− xk+1. Now, using the fact proved above, we
know that xk ≤ 3 ∀k ∈ N so the terms on both sides of the inequality are positive. Thus, we
can divide both sides by the positive quantity (4−xk)(4−xk+1) to find 1/(4−xk+1) < 1/(4−xk)
which is equivalent to xk+1 > xk+2 as desired.

The sequence is bounded below by zero because xn ≤ 3 ∀n ∈ N implies 4− xn ≥ 1 > 0 which
implies xn+1 > 0 ∀n ∈ N. Since x1 = 3 > 0, we have that xn > 0 ∀n ∈ N. Therefore, {xn} is
a bounded, monotone sequence and converges to some limit L by the Monotone Convergence
Theorem.

(b) Proof: We have shown that xn → L. To see that {xn+1} = x2, x3, x4, . . . also converges
to L, let ǫ > 0 be given. By the definition of convergence, since xn → L, there exists
an N ∈ N such that |xn − L| < ǫ ∀n ≥ N . Using this same choice of N , we have that
|xn+1 − L| < ǫ ∀n ≥ N which verifies the definition of convergence for the sequence {xn+1}.
(The last step follows because if every term after xN in the sequence {xn} is within ǫ of L,
then each term of the sequence {xn+1} is within ǫ of L after the (N − 1)st term.)

All of the above can be summarized nicely by realizing that it is the “tail” of the sequence
that we are interested in when studying convergence. Shifting the index up by one just effects
the start of the sequence. It does not alter the tail nor the convergence of the sequence.

(c) Taking the limit of both sides of the recursive equation and applying the Big Limit Theorem
a few times yields L = 1/(4 − L). Solving this equation leads to the quadratic equation
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L2 −4L+1 = 0. Using the quadratic formula, we find that L = (4±
√

12)/2 = 2±
√

3 . Since
the sequence is bounded above by 3, we must have L ≤ 3, by the Order Limit Theorem (use
the constant sequence of 3’s). Therefore, L = 2 −

√
3.

2.4.4 The sequence of nested square roots of 2 can be described recursively as xn+1 =
√

2xn and
x1 =

√
2. We first show that this sequence is bounded above by 2. Specifically, we show that

xn ≤ 2 ∀n ∈ N. Using induction, the base case x1 =
√

2 ≤ 2 is clear. Next, suppose that
xk ≤ 2. Then 2xk ≤ 4 and

√
2xk ≤ 2 (we can take the square root of each side since the

square root function is increasing.) This last inequality is equivalent to xk+1 ≤ 2 which proves
the claim of boundedness.

Next, we show that the sequence is increasing by induction. For the base case, we must show

that x1 ≤ x2. This is clear since 2 ≤ 2
√

2 implies that x1 =
√

2 ≤
√

2
√

2 = x2 (again, we can
take the square root of each side because the square root function is increasing). Next, assume
that xk ≤ xk+1. We want to show that xk+1 ≤ xk+2. Beginning with xk ≤ xk+1, multiply
both sides by 2 and take the square root of each side. This gives

√
2xk ≤ √

2xk+1 which is
equivalent to xk+1 ≤ xk+2. This shows that the sequence is increasing. By the Monotone
Convergence Theorem, since {xn} is increasing and bounded above, it converges to some limit
L.

To find the limit, we use the fact that xn+1 → L and apply the Big Limit Theorem to the
equation

x2
n+1 = 2xn

to avoid the square roots. (Note that we haven’t proven that lim
√

xn =
√

lim xn yet.) This
gives L2 = 2L which implies that L = 0 or L = 2. But since {xn} is increasing and starts
with x1 =

√
2, we can rule out the case L = 0. Therefore, the limit of the sequence is 2.
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