
MATH 242: Principles of Analysis

Homework Assignment #3

Partial Solutions

4. The linear function L(x) = (b−a)x+a is a bijection between (0, 1) and (a, b). This is clear from
a graph. For a more rigorous argument, suppose that L(x1) = L(x2). This is equivalent to
(b−a)x1 +a = (b−a)x2 +a. Subtract a and divide by the nonzero quantity b−a to conclude
that x1 = x2. This proves that L is one-to-one. To show that L is onto, pick an arbitrary
element y ∈ (a, b). Let x = (y − a)/(b− a). Since a < y < b, we know that x ∈ (0, 1). Then,
L(x) = (b− a) · (y − a)/(b− a) + a = y. This shows that L is onto and therefore a bijection.
We conclude that the open intervals (0, 1) and (a, b) have the same cardinality.

5. Show that the open interval (0, 1) has the same cardinality as R by finding a bijection between
(0, 1) and R. Based on the previous problem, conclude that the entire real number line and
any open interval, no matter how small, have the same size!

Proof: Let f : (0, 1)→ (−π/2, π/2) be given by f(x) = πx−π/2 and let g : (−π/2, π/2)→ R
be given by g(x) = tanx. Then set h = g ◦ f . Both f and g are bijections. Since the
composition of two bijections is a bijection (proved on this HW in problem 1.4.9), we know
that h is a bijection from (0, 1) to R. This proves that (0, 1) ∼ R and using the previous
problem as well as problem 1.4.9, we have that (a, b) ∼ R for any open interval (a, b) (no
matter how small!).

7. Find the limit of the sequence xn =
2 + 5n

8 + 11n
and prove that it converges to this limit using the

ε-N defintion of convergence.

The limit is L = 5/11. Let ε > 0 be given. Choose N ∈ N such that N > 18
121ε

. Then, if
n ≥ N , we have n > 18

121ε
which is equivalent to 18

121n
< ε.

Punchline: Therefore,

|xn − L| =

∣∣∣∣ 2 + 5n

8 + 11n
− 5

11

∣∣∣∣ =
18

11(8 + 11n)
<

18

121n
< ε ∀n ≥ N �.

1.4.9 (a) Given sets A and B, prove that A ∼ B ⇒ B ∼ A.

Proof: Since A ∼ B, there exists a bijection f : A→ B. Let g = f−1. Since f is one-to-one,
f−1 exists. We claim that g is a bijection from B to A. Suppose that g(b1) = g(b2). This means
f−1(b1) = f−1(b2). Applying f to both sides and using the fact that f(f−1(b)) = b ∀b ∈ B
gives b1 = b2. Thus, g is one-to-one. To show that g is also onto, pick an arbitrary element
a ∈ A. We must find a b ∈ B such that g(b) = a. Choose b = f(a). Then g(b) = f−1(b) =
f−1(f(a)) = a as desired. This shows that g is a bijection and that B ∼ A.

(b) Given three sets A,B,C, show that A ∼ B and B ∼ C implies that A ∼ C. Taken
together with part (a) and the fact that A ∼ A (use the identity function), this shows that ∼
is an equivalence relation.



Proof: It suffices to show that the composition of two bijections is a bijection. For if A ∼ B,
there exists a bijection f : A → B and if B ∼ C, there exists a bijection g : B → C, so
letting h = g ◦ f gives a bijection h : A → C. Suppose that h = g ◦ f is the composition
of two bijections g and f . First, suppose that h(a1) = h(a2). By definition, this means that
g(f(a1) = g(f(a2)). Since g is one-to-one, this means that f(a1) = f(a2). Since f is also
one-to-one, this implies that a1 = a2. Thus, h is one-to-one.

To show that h is onto, pick an arbitrary element c ∈ C. Since g is onto, there exists an
element b ∈ B such that g(b) = c. But since f is onto as well, there exists an element a ∈ A
such that f(a) = b. Thus, we have h(a) = g(f(a)) = g(b) = c as desired. Therefore, h is a
bijection and the proof is complete.

2.2.4 The sequence
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, (5 zeroes) , 1, . . .

does not converge to zero.

Proof: Suppose by contradiction that the sequence above converges to L = 0. Pick ε = 1/2.
Then, by the definition of convergence, there exists an N ∈ N such that |xn − L| = |xn| =
xn < ε = 1/2 ∀n ≥ N . However, no matter how large N is, we can always find an n > N
with xn = 1. Using this particular n in the previous statement would give xn = 1 < 1/2, a
clear contradiction. Therefore, the sequence does not converge to 0. This argument would
work for any choice of ε ≤ 1 since the final step (contradiction) would read xn = 1 < ε and
this is clearly false for any ε ≤ 1.

Note that for any ε > 1, there is always a valid choice of N ∈ N, namely N = 1, that
will satisfy the key inequality in the definition of convergence. This is due to the fact that
|xn − 0| < ε becomes either 0 < ε or 1 < ε (depending on n) and both of these are true if
ε > 1.

2.2.6 Suppose that for a particular ε > 0, we have found a suiable value of N ∈ N that “works”
for a given sequence in the sense of the definition of convergence.

(a) Then, any larger N ∈ N will also work in the definition of convergence for the same ε > 0.
This is because of the ∀n ≥ N part of the definition. If something is true for any n ≥ N then
it also true for any n ≥ N1 > N .

(b) Then, this same N will also work for any larger value of ε. Suppose that ε1 > ε. If
|xn − L| < ε ∀n ≥ N , then it is also true that |xn − L| < ε < ε1 ∀n ≥ N .


