
MATH 242: Principles of Analysis

Homework Assignment #2

Partial Solutions

1) Axiom of Completeness (A of C): Any nonempty set of real numbers bounded above has a least
upper bound.

Statement L: Any nonempty set of real numbers bounded below has a greatest lower bound.

The point of this problem is to show that the Axiom of Completeness implies Statement L.
It is also the case that Statement L implies the (A of C) but that is a different problem (exam
question?)

First, let’s prove a useful fact that we will need throughout the problem: l is a lower bound
for A if and only if u = −l is an upper bound for the set −A.

To prove this, suppose l is a lower bound for A. This means l ≤ a ∀a ∈ A. Multiplying both
sides of the previous inequality by −1, shows that −l ≥ −a ∀a ∈ A. But this is the very
definition for being an upper bound of the set −A. Thus, u = −l is an upper bound for −A.

The other direction is similar. Suppose u = −l is an upper bound for −A. This means
u ≥ −a ∀a ∈ A. Multiplying both sides of the previous inequality by −1 gives l ≤ a ∀a ∈ A.
But this is the very definition for being a lower bound of the set A. Thus, l is a lower bound
for A. This completes the proof of our useful fact.

Proof of a): We know that A is bounded below. Let l be a lower bound for A. Then, by
our useful fact, u = −l is an upper bound for −A and −A is bounded above. By the Axiom
of Completeness, −A has a least upper bound. In other words, sup(−A) exists.

Let s = sup(−A). We must show that −s = inf(A). To do this, we must show that −s is a
lower bound for A and that it is the greatest lower bound. By definition of sup(−A) part (i),
we know that s is an upper bound of −A. By our useful fact, this means that −s is a lower
bound for A.

Next, let l be any arbitrary lower bound for A. Again, using our useful fact, this means that
−l is an upper bound for −A. By definition of sup(−A) part (ii), we have s ≤ −l because the
supremum is the least of the upper bounds. But s ≤ −l implies −s ≥ l which shows that −s
is greater than any lower bound of A. Therefore, −s = − sup(−A) satisfies both properties
of the definition of infimum for A. Since the infimum of a set is unique, we have −s = inf(A)
as desired.

Proof of b): We want to prove Statement L. Suppose that A is a nonempty set of real
numbers bounded below. Consider the set −A = {−a : a ∈ A}. By part a) and the proof of
part a), this set has a supremum s (using A of C) and −s satisfies the definition of inf(A).
Therefore, inf(A) exists and A has a greatest lower bound.



2) Let A and B be nonempty subsets of R that are bounded above, and define

A + B = {a + b : a ∈ A and b ∈ B}.

Show that sup(A + B) = sup(A) + sup(B).

Proof: First, let sa = sup(A) and let sb = sup(B). These exist by the Axiom of Completeness.
Let a ∈ A and b ∈ B be arbitrary. By definition of supremum part (i), we have a ≤ sa and
b ≤ sb. Then, we have a + b ≤ sa + b ≤ sa + sb. Since a and b were arbitrary, this shows
that sa + sb is an upper bound for the set A + B. By the Axiom of Completeness, this
shows that sup(A + B) exists. Then, by definition of supremum for A + B part (ii), we have
sup(A + B) ≤ sa + sb since the supremum of a set is always less than or equal to any upper
bound of the set.

Next, suppose by contradiction that sup(A + B) < sa + sb. Let ǫ = sa + sb − sup(A + B).
By assumption, ǫ > 0. Applying the Sup Lemma to both sets A and B, we know there exists
a ∈ A and b ∈ B, such that sa − ǫ/2 < a and sb − ǫ/2 < b. Adding these two inequalities
yields

sa + sb − ǫ < a + b.

But sa + sb − ǫ = sup(A + B). Thus, we have found an element a + b ∈ A + B with
sup(A+B) < a+ b. This contradicts the first part of the definition of a supremum for A+B.
Therefore, sup(A + B) ≥ sa + sb. Taken together with sup(A + B) ≤ sa + sb, this proves that
sup(A + B) = sa + sb as desired.

4) Show that
∞⋂

n=1

[0, 1/n] = {0}.

Proof: Let In = [0, 1/n]. Recall that x ∈
∞⋂

n=1

In only if x ∈ In ∀n ∈ N. Clearly 0 ∈ In ∀n ∈ N

since In is a closed interval containing 0 as a left endpoint. By contradiction, suppose that

x ∈
∞⋂

n=1

In and x 6= 0. Clearly, x < 0 is impossible since there are no negative elements

in any of the In. However, if x > 0, there exists an n ∈ N such that 1/n < x by the
Archimedean Property part (ii). For this particular n, we have x 6∈ In and consequently

x 6∈
∞⋂

n=1

In. Therefore, x = 0 is required and

∞⋂

n=1

[0, 1/n] = {0}.

1.3.4 Since A and B are nonempty sets that are bounded above, sup(A) and sup(B) exist by the
Axiom of Completeness. Let b ∈ B be arbitrary. Since B ⊆ A, we have b ∈ A by definition of
subset. Since sup(A) is an upper bound for A (def. of supremum part (i)), b ≤ sup(A) (def.
of upper bound). Since b was arbitrary, this means that sup(A) is an upper bound for the set
B. By definition of supremum for B part (ii), we have sup(B) ≤ sup(A) because sup(B) is
less than or equal to any upper bound of B. This completes the proof.



1.3.6 (a) The set in question is simply {1, 2, 3} so sup(A) = 3 and inf(A) = 1.

(b) Choosing m = 1 and n arbitrarily large shows that sup(B) = 1. Meanwhile, choosing
n = 1 and m arbitrarily large shows that inf(B) = 0.

(c) The elements in this set form an increasing sequence C = {1/3, 2/5, 3/7, 4/9, . . .}. It is
then clear that inf(C) = 1/3 while sup(C) = 1/2.

(d) The smallest and largest values for m and n are 1 and 9 respectively. Thus inf(D) = 1/9
while sup(D) = 9.

1.4.2 (a) This follows from the fact that the integers are closed under addition and multiplication
and from the rules for adding and multiplying fractions.

(b) By contradiction, suppose that a + t ∈ Q. Then ∃r ∈ Q such that a + t = r or t = r − a
or t = r + (−a). By part (a), this means that t ∈ Q contradicting the given assumption that
t ∈ I. Thus, a + t ∈ I. The proof for the product at is similar.

(c) The irrationals are not closed under addition and multiplication. Consider
√

5+(−
√

5) =
0 and

√
5 · (−

√
5) = −5. In each case, two irrationals combine to obtain a rational.

1.4.5 The proof is identical to the one provided for problem 4) except that 0 is no longer contained
in any of the In = (0, 1/n) because they are open rather than closed intervals. Thus the
infinite intersection of nested open intervals can be empty.


