MATH 242 Principles of Analysis

Solution to Problem 2m in Section 3.1

2m. Prove that
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using the e-0 definition.

Proof: Let € > 0 be given. We must find a > 0 such that
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Simplifying |f(z) — L| gives
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In order to make this smaller than €, we need to bound the term 1/|5x — 3|. To do this we want
the denominator to be bounded away from 0. Note that when z = 3/5 this term blows up to +o0c.
This is a problem!

Suppose that § < 1/5, then |z — 1| < 1/5 means 4/5 < x < 6/5 and thus we have kept = away
from the danger zone around x = 3/5. (Choosing ¢ < 1 is not restrictive enough. This doesn’t
exclude x = 3/5.) Then, since |5z — 3| is smallest when 2 = 4/5, we have
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Then, letting 6 = min{1/5,2¢/5}, we have
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which completes the proof.



