
Multivariable Calculus, Spring 2015

Computer Project #2

Optimization: Mountains, Celestial Mechanics, and Least Squares

DUE DATE: Wednesday, April 1, start of class.

1 Introduction

This project focuses on two particular applications of multivariable calculus involving optimization.
There are many, many problems where extrema of functions are required to find an optimal answer
to a real-world question. Here you will re-discover one of the first solutions to the three-body
problem in celestial mechanics, and help a field biologist estimate the population of rare toads.
You will also compute the maximum height of a mountain. Each problem requires you to find
and classify the critical points of a function of two variables. We will make use of the computer
software MAPLE to visualize functions, draw contour diagrams, locate extrema, and simplify our
computations.

It is required that you work in a group of two or three people. Any help you receive from
a source other than your lab partner(s) should be acknowledged in your report. For example,
a textbook, web site, another student, etc. should all be appropriately referenced at the end of
your report. The project should be typed although you do not have to typeset your mathematical
notation. For example, you can leave space for a graph, computations, tables, etc. and then write
it in by hand later. You can also include graphs or computations in an appendix at the end of your
report. Your presentation is important and I should be able to clearly read and understand what
you are saying. Only one project per group should be submitted.

Your report should provide coherent answers to the questions in each section. Be sure to read
carefully and answer all of the questions asked. Please do not overload your report (or my attention
for reading) by including large numbers of graphs and tables. A well-written report with a few
tables and graphs to illustrate key points is far better than a sloppy report with too many figures.

2 Mountain Peaks

In this “warm-up” exercise, you will use Maple to find the highest peaks of a mountain. Consider
the function

f(x, y) = 5 − 10xy − 4x2 + 3y − y4,

whose output gives the height of a certain mountain (in thousands of feet). The point (x, y, f(x, y))
can be thought of as a point on the mountain.

1. Use MAPLE to find all of the critical points of f , accurate to five decimal places. Some of this
problem needs to be done by hand; other parts require MAPLE. Feel free to use the plot3d

and contourplot commands to help you locate the solutions. The fsolve command can be
used to solve a system of two equations in two variables with a high degree of accuracy. For
example, the command

fsolve({x^2 + y^2 = 1, 2*x - y = 0}, {x,y},x=0..1,y=0.3..1);
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simultaneously solves the system x2 + y2 = 1, y = 2x in the region 0 ≤ x ≤ 1, 0.3 ≤ y ≤ 1.
It is important to adjust the region over which you are looking for a solution so that the
computer can accurately find an answer. Since there are several extrema, you will need to
specify the domain carefully when searching for each critical point.

2. Classify the critical points you found in the previous question as minima, maxima, or saddles.
Apply the second derivative test to confirm your findings.

3. Turn in a nice graph of the mountain, indicating the highest point(s) (the local maxima).
What is the actual height of each peak?

3 Celestial Mechanics: The planar circular restricted three-

body problem

Consider the following question about the motion of three celestial bodies: Given three masses
in space with prescribed initial positions and initial velocities, what is the motion of the bodies
over time if the only force acting upon them is their mutual gravitation? Although it was posed
centuries ago, we still do not have a complete answer to this question. Concerning the motion of the
Earth, Sun, and Moon, Isaac Newton once frustratingly remarked to the astronomer John Machin
that “... his head never ached but with his studies on the moon.”[1] Although Newton successfully
used his theory of Calculus to prove that Kepler’s empirical laws were in fact accurate (e.g., the
Earth travels on an elliptical orbit with the Sun at one of the focal points), he was unable to find
a solution to the motion of three bodies in space, the so-called three-body problem. To this day,
the three-body problem remains an open question and an active area of research in the fields of
mathematics, physics, astronomy, and space travel.

One way of approaching this complicated problem is to assume we know the motion of two
massive bodies (say the Earth and the Sun) and then try to ascertain the motion of a third,
infinitesimal mass (say the moon or a satellite). Let us assume that the larger bodies, called
primaries, are on circular orbits about their center of mass and that their motion lies in a plane.
The third infinitesimal mass, being so small, does not effect the motion of the larger bodies, whose
orbits remain circular. Investigating the motion of the third mass subject to the gravitational
attraction from the other two is called the planar circular restricted three-body problem. In this set
of exercises, you will find some of the simplest (and earliest) solutions to this particular version of
the three-body problem.

Using Newton’s law of gravitation, the force between two bodies is proportional to the product of
their masses and inversely proportional to the square of the distance between them. Using F = ma,
we can set up a system of differential equations (a is a second derivative of position) that governs
the motion of the infinitesimal particle. We can choose a rotating coordinate frame so that in the
new coordinates, the position of the first and second mass appear fixed.

Let µ be a positive real number (a parameter) with µ < 1. Denote m1 = µ and m2 = 1 − µ as
the masses (normalized so that m1 +m2 = 1) of the two large bodies, and fix their positions to be
in the plane at the points q1 = (1 − µ, 0) and q2 = (−µ, 0). This is done so that their center of
mass (m1q1 +m2q2)/(m1 +m2) is at the origin (check it). Let the position of the third infinitesimal
mass be given by (x, y), where each variable is really a function of time. The motion of the third
infinitesimal mass involves what is called the effective potential, given by

V (x, y) =
1

2
(x2 + y2) +

µ√
(x− 1 + µ)2 + y2

+
1 − µ√

(x+ µ)2 + y2
. (1)
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Note that the denominators of the two fractions in equation (1) give the distances between the large
bodies and the small infinitesimal mass. This comes from Newton’s inverse square law.

It turns out that the critical points (extrema) of the effective potential V (x, y) are equilibrium
solutions of the differential equations governing the motion of the third body. This is a special
solution to the system of differential equations in which the third body is at rest with respect to
the other two. Of course the whole system is going around in a circle about the origin so the
third body would be moving in a circular orbit just like the others. (Think of three points on a
spinning record player. Seen from the record, the points are always the same distance apart, while
seen from above, they are moving in circles about the center of the record.) These solutions are
called libration points in classical celestial mechanics literature. They were discovered by the great
mathematicians Lagrange and Euler in the mid-18th century and were some of the first solutions
found in the three-body problem. They happen to make excellent “parking” spaces for spacecrafts,
satellites, or even other celestial bodies such as a moon.

1. Begin by setting µ = 1/2, so m1 = m2 = 1/2, that is, the primaries have equal mass. One
might expect to find some nice symmetry in this case.

(a) Setting µ = 1/2, what is the domain of V (x, y)? Where is V (x, y) undefined and
what happens to the effective potential as you approach these points? Note: You
could use MAPLE and the plot3d command to view a graph of the function. The
view=-3..3 option is helpful here — you pick an appropriate range.

(b) Compute the partial derivatives Vx and Vy BY HAND. Show that Vx = 0 at any point
on the y-axis and Vy = 0 at any point on the x-axis in the domain.

(c) Find all of the critical points of V (x, y) as accurately as possible and classify them as
maxima, minima, or saddles. There are five of them.

Hint: Use symmetry and the result from the previous question. Follow the same approach
you used for the mountain problem. You do not need to apply the second derivative test
to confirm the types of critical points.

(d) Draw a graph in the xy-plane containing all the critical points as well as the two positions
of the large primaries with masses m1 = m2 = 1/2. What can you say about the location
of each critical point with respect to the two large primaries? What shape is formed by
the three bodies? Use the specific shape to determine the exact location (no decimals)
of two of your critical points.

2. Now assume that µ = 1/10, so m1 = 1/10 and m2 = 9/10, that is, the second primary is nine
times larger than the first. Change your function V (x, y) accordingly.

(a) Compute the partial derivatives Vx and Vy BY HAND. Is it still true that Vx = 0 at any
point on the y-axis and Vy = 0 at any point on the x-axis in the domain? Explain.

(b) Find all of the critical points of V (x, y) as accurately as possible and classify them as
maxima, minima, or saddles. There are five of them.

Hint: Use the result from part (a) and follow the same approach you used for the
mountain problem. You do not need to apply the second derivative test to confirm the
types of critical points.

(c) Draw a graph in the xy-plane containing all the critical points as well as the two positions
of the large primaries. Compare your graph to the one obtained in the previous question,
part (d). What is similar and what is different?
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4 Least Squares: How to fit a line to a set of data

Another important optimization problem involves fitting a set of data to a prescribed curve. Often,
the data we record in the real world is not perfectly linear or quadratic or cubic or exponential, etc.
However, it may be well approximated by a particular line or curve. This exercise gives one way in
which to find the “best” such curve, called the method of least squares.

Suppose that a biologist working in the field for several months records the following measure-
ments for the number of rare toads, where t is measured in months and n represents the number of
toads observed in the hundreds. The data is plotted in Figure 1. The value n = 20 at t = 0 is an
assumption on the part of the biologist based on a previous expedition.

t in months n in hundreds
0 20

0.4 17.3
0.8 18.2
1 17.3

1.5 16.1
2 15.6

2.7 14.1
3 13.5

3.2 12.4
3.8 11.6
4 11

4.1 10.2

Let (ti, ni) represent the i-th data point from the table. (So i ranges between 1 and 12.) We
want to find the best line such that the sum of the squares of the vertical distance between each
point and the line is as small as possible. In other words, suppose that n = mt+ b is the equation
of the best fitting line. Then the point on the line directly above or below (ti, ni) has coordinates
(ti,mti + b). We want the distance squared between all such pairs of points to be small, that is, we
seek the unknown constants m and b so that

F (m, b) =
12∑
i=1

(ni − (mti + b))2

is as small as possible.

1. Plug in the twelve data points above to form the function F (m, b). You can use MAPLE
to do the algebra for you; the hard part is typing in the data correctly. Go slowly! The
command expand( ) will expand and simplify any expression inside the parentheses. For
example, expand( (x-y)^2); gives the polynomial x2 − 2xy + y2. You should obtain an
expression containing only m and b, a function of two variables! State your simplified version
of F (m, b).

2. Compute the first partial derivatives of F (m, b) with respect to m and b and find the critical
point. This gives the precise value of the slope and n-intercept of the best least squares line.
Plot this line on the same graph as the data (use Figure 1). Turn in your graph and state the
equation of the line
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Figure 1: The data collected by a biologist on the number of rare toads n in hundreds versus time
t in months.

3. Compute the second-order partial derivatives and show that the critical point you found in
the previous question is indeed a minimum.

4. Based on your linear approximation to the biologist’s data, when should we expect the toad
species to go extinct?
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