MATH 241 Multivariable Calculus
 SOLUTIONS to Final Exam Review Questions

1. (a) (iii)
(b) (i)
(c) (iii)
(d) (iii)
(e) (iii)
2. (a) $\overrightarrow{A B}=<1,-2,2>, \overrightarrow{A C}=<2,0,2>, \overrightarrow{B C}=<1,2,0>$
(b) B and C
(c) 45° or $\pi / 4$
(d) $x=5-4 t, y=2 t, z=1+4 t$
3. $\mathbf{T}(1)=<\frac{1}{3}, \frac{2}{3}, \frac{2}{3}>, \mathbf{N}(1)=<-\frac{2}{3 \sqrt{5}},-\frac{4}{3 \sqrt{5}}, \frac{5}{3 \sqrt{5}}>$
4. (a) $<\cos t, \sin t, t>, 3$ loops
(b) speed is $\sqrt{2}$, time to snitch is 6π
(c) 6π meters
(d) $9 \pi / \sqrt{2}$, Gryffindor wins (of course!)
5. (a) Domain is \mathbb{R}^{2}, Range is $3 \leq z \leq 5$
(b) $(0,0)$ is a saddle point.
(c) Level curves are hyperbolas. The x - and y-axes are level curves.
6. (a) $(0,0),(1,1),(-1,-1)$.
(b) $(0,0)$ is a saddle point, $(1,1)$ is a local maximum, $(-1,-1)$ is a local maximum.
(c) No absolute min, but absolute max is 0 .
7. 64
8. (a) 0
(b) $\frac{16 \sqrt{2} \pi}{3}(2-\sqrt{3})$
9. (a) Show that $Q_{x}-P_{y}=0$.
(b) $f(x, y)=e^{x y}+\sin (x-y)+3 y$
(c) $1-3 \pi / 2$
10. 0
11. (a) $0 \leq r<\infty, 0 \leq \theta \leq \pi / 2$. The value of the integral is $\pi / 4$.
