MATH 241 Multivariable Calculus

SOLUTIONS to Final Exam Review Questions

- 1. (a) (iii)
 - (b) (i)
 - (c) (iii)
 - (d) (iii)
 - (e) (iii)

2. (a)
$$\vec{AB} = <1, -2, 2>, \vec{AC} = <2, 0, 2>, \vec{BC} = <1, 2, 0>$$

- (b) B and C
- (c) $45^{\circ} \text{ or } \pi/4$

(d)
$$x = 5 - 4t, y = 2t, z = 1 + 4t$$

- 3. $\mathbf{T}(1) = <\frac{1}{3}, \frac{2}{3}, \frac{2}{3} >, \mathbf{N}(1) = <-\frac{2}{3\sqrt{5}}, -\frac{4}{3\sqrt{5}}, \frac{5}{3\sqrt{5}} >$
- 4. (a) $< \cos t, \sin t, t >$, 3 loops
 - (b) speed is $\sqrt{2}$, time to snitch is 6π
 - (c) 6π meters
 - (d) $9\pi/\sqrt{2}$, Gryffindor wins (of course!)
- 5. (a) Domain is \mathbb{R}^2 , Range is $3 \le z \le 5$
 - (b) (0,0) is a saddle point.
 - (c) Level curves are hyperbolas. The x- and y-axes are level curves.
- 6. (a) (0,0), (1,1), (-1,-1).
 - (b) (0,0) is a saddle point, (1,1) is a local maximum, (-1,-1) is a local maximum.
 - (c) No absolute min, but absolute max is 0.
- $7.\ 64$
- 8. (a) 0

(b)
$$\frac{16\sqrt{2}\pi}{3}\left(2-\sqrt{3}\right)$$

- 9. (a) Show that Q_x P_y = 0.
 (b) f(x, y) = e^{xy} + sin(x y) + 3y
 (c) 1 3π/2
- 10. 0
- 11. (a) $0 \le r < \infty$, $0 \le \theta \le \pi/2$. The value of the integral is $\pi/4$.