
MATH 241 Multivariable Calculus

Exam #3 SOLUTIONS April 22, 2015 Prof. G. Roberts

1. Multiple Choice: Choose the best answer available (no work required). (5 pts. each)

(a) Suppose that (3, 2) is a critical point of the function f(x, y), and that all the partial deriva-
tives of f exist and are continuous. If fxx(3, 2) = −4 and fyy(3, 2) = 1, then, at the point
(3, 2), the function f(x, y) has

(i) a maximum,

(ii) a minimum,

(iii) a saddle point,

(iv) not enough information given.

Answer: (iii). Applying the second derivative test, the determinant of the Hessian matrix
at the critical point (3, 2) is equal to

D = fxx(3, 2) · fyy(3, 2)− (fxy(3, 2))2 = −4− (fxy(3, 2))2 < 0.

Thus, D < 0 regardless of the value of fxy(3, 2), and so (3, 2) is a saddle point.

Alternatively, since fxx(3, 2) > 0, the function is concave up in the x-direction, but since
fyy(3, 2) < 0, it is concave down in the y-direction. This is enough qualitative information
to conclude that the critical point is a saddle.

(b) Let R be the rectangle [−1, 1] × [0, 4]. Which of the following is the Riemann sum for∫ ∫
R
g(x, y) dA with m = n = 2, assuming that the sample points are chosen to be the

upper right corners?

(i) [g(−1, 0) + g(1, 0) + g(−1, 4) + g(1, 4)] · 8,

(ii) [g(0, 0) + g(1, 0) + g(0, 4) + g(1, 4)] · 8,

(iii) [g(0, 2) + g(1, 2) + g(1, 0) + g(0, 0)] · 2,

(iv) [g(0, 2) + g(1, 2) + g(1, 4) + g(0, 4)] · 2.

Answer: (iv). To compute the Riemann sum, we make two subdivisions in both the x-
and y-directions. Hence, ∆x = (1 − −1)/2 = 1 and ∆y = (4 − 0)/2 = 2, so ∆A = 1 · 2 =
2 (this eliminates the first two choices). Dividing the rectangle into four sub-rectangles
and choosing the upper right corners of each sub-rectangle as the sample points leads to
choice (iv).

(c) Suppose that D is a region in the plane whose area is
√

2. The value of the double integral∫ ∫
D

5 dA is

(i) 25,

(ii) 5
√

2,

(iii)
√

2,

(iv) not enough information given.



Answer: (ii). Recall that the double integral of 1 over the region R is equal to the area
of R. Therefore, we have

∫ ∫
D

5 dA = 5
∫ ∫

D
1 dA = 5

√
2.

(d) In cylindrical coordinates, assuming that r ≥ 0, the equation z + r = 0 describes a

(i) half plane,

(ii) cylinder,

(iii) sphere,

(iv) upward facing cone,

(v) downward facing cone.

Answer: (v). In cylindrical coordinates, r =
√
x2 + y2, so that z = −r is equivalent to

z = −
√
x2 + y2, a downward facing cone with vertex at the origin.

2. Using the method of Lagrange multipliers, find the absolute maximum and minimum values of
f(x, y) = 2x+ y2 subject to the constraint g(x, y) = 2x2 + y2 = 8.

State both the maximum and minimum values as well as the point(s) where each occurs. (20
pts.)

Answer: The minimum value of f is −4, which occurs at the point (−2, 0). The maximum
value is 17/2, occurring at the points (1/2,±

√
15/2).

Using Lagrange multipliers, we must solve the system of equations ∇f = λ∇g and g = 8. This
leads to the system

2 = λ4x (1)

2y = λ2y (2)

2x2 + y2 = 8. (3)

The easiest equation to handle is equation (2). We have 2y − λ2y = 0 or 2y(1 − λ) = 0. Thus
there are two cases: y = 0 or λ = 1.

Case 1: Suppose that y = 0. Plugging into the constraint given by equation (3), we see that
2x2 = 8 or x = ±2. (It follows from equation (1) that λ = ±1/4, but this is irrelevant.) Thus,
two of our possible extrema occur at (±2, 0).

Case 2: Suppose that λ = 1. Plugging into equation (1), we find that 2 = 4x or x = 1/2.
Plugging this value into equation (3) gives 1/2 + y2 = 8 or y = ±

√
15/2. Thus, there are two

more possible extrema at the points (1/2,±
√

15/2).

To finish the problem, we evaluate the function f at each of the four points just determined. We
have f(2, 0) = 4, f(−2, 0) = −4, and f(1/2,±

√
15/2) = 17/2. Hence, the absolute maximum is

17/2 at the points (1/2,±
√

15/2) and the absolute minimum is −4 at the point (−2, 0).



3. Consider the integral ∫ 2

0

∫ 4

x2
2xey

2

dy dx .

(a) Sketch the region of integration. (6 pts.)

Answer: The region of integration is defined by the inequalities x2 ≤ y ≤ 4 and 0 ≤ x ≤ 2
(vertical cross-sections). This gives the region in green shown below.

(b) Reverse the order of integration and evaluate the integral. (14 pts.)

Answer: 1
2
(e16 − 1).

Note that the integral is impossible to compute in its current form. To reverse the order
of integration, we switch from vertical to horizontal cross-sections. Note that y = x2 is
equivalent to x =

√
y. Thus, an alternative way to describe the region of integration is

0 ≤ x ≤ √y and 0 ≤ y ≤ 4.

We have ∫ 2

0

∫ 4

x2
2xey

2

dy dx =

∫ 4

0

∫ √y
0

2xey
2

dx dy

=

∫ 4

0

x2ey
2

∣∣∣∣
√
y

0

dy

=

∫ 4

0

yey
2

dy (a u-sub with u = y2, du = 2y dy)

=
1

2
ey

2

∣∣∣∣4
0

=
1

2

(
e16 − 1

)
.



4. Using polar coordinates, evaluate ∫ ∫
D

x dA ,

where D is the region lying to the right of the y-axis (so x ≥ 0) and between the two circles
x2 + y2 = 1 and x2 + y2 = 4. (14 pts.)

Answer: 14/3. The radii of the two circles are r = 1 and r = 2, respectively. Thus, in polar
coordinates, the region of integration is 1 ≤ r ≤ 2, −π/2 ≤ θ ≤ π/2. Since x = r cos θ in polar
coordinates, we have ∫ ∫

D

x dA =

∫ π/2

−π/2

∫ 2

1

r cos θ · r dr dθ

=

∫ π/2

−π/2

∫ 2

1

r2 cos θ dr dθ

=

∫ π/2

−π/2

r3

3
cos θ

∣∣∣∣∣
2

1

dθ

=

∫ π/2

−π/2

7

3
cos θ dθ

=
7

3
sin θ

∣∣∣∣π/2
−π/2

=
7

3
(1−−1) =

14

3
.



5. Set up a triple integral to find the volume of the tetrahedron enclosed by the three coordinate
planes and the plane 5x + 2y + z = 10. DO NOT evaluate the triple integral, just set it up.
(10 pts.)

Answer: It is helpful to start by finding the x-, y- and z-intercepts of the plane 5x+2y+z = 10.
For example, when x = y = 0, we have z = 10. The x-intercept is 2 and the y-intercept is 5.
The tetrahedron is shown below.

Using vertical line segments parallel to the z-axis, we see that 0 ≤ z ≤ 10 − 5x − 2y (starting
in the xy-plane and exiting in the plane z = 10 − 5x − 2y.) Then we project the entire solid
into the xy-plane (see figure below). The plane z = 10− 5x− 2y intersects the xy-plane in the
line y = 5 − 5

2
x. This can be found by plugging in z = 0 into the equation for the plane, or by

using the intercepts to find the equation of the line. Using vertical cross-sections to describe the
projection into the xy-plane, we have 0 ≤ y ≤ 5− 5

2
x and 0 ≤ x ≤ 2. The triple integral for the

volume is therefore

V =

∫ 2

0

∫ 5− 5
2
x

0

∫ 10−5x−2y

0

1 dz dy dx .



6. Evaluate ∫ ∫ ∫
S

(x2 + y2 + z2)3/2 dV ,

where S is the solid that lies within the sphere x2 + y2 + z2 = 2, above the xy-plane, and below
the cone z =

√
x2 + y2. (16 pts.)

Answer: 4
√
2π
3

. Using spherical coordinates, the sphere x2 + y2 + z2 = 2 is simply ρ =
√

2,

and the cone z =
√
x2 + y2 is just φ = π/4. Since the cone is the upper-limit and the xy-plane

is the lower limit, we have π/4 ≤ φ ≤ π/2 (remember that φ is the angle measured from the
positive z-axis). The other limits of integration are 0 ≤ θ ≤ 2π and 0 ≤ ρ ≤

√
2. The integrand

(x2 + y2 + z2)3/2 simplifies to (ρ2)3/2 = ρ3. We compute∫ ∫ ∫
S

(x2 + y2 + z2)3/2 dV =

∫ 2π

0

∫ π/2

π/4

∫ √2
0

ρ3 · ρ2 sinφ dρ dφ dθ

=

∫ 2π

0

∫ π/2

π/4

∫ √2
0

ρ5 sinφ dρ dφ dθ

=

∫ 2π

0

∫ π/2

π/4

ρ6

6

∣∣∣∣∣
√
2

0

sinφ dφ dθ

=
8

6

∫ 2π

0

∫ π/2

π/4

sinφ dφ dθ

=
4

3

∫ 2π

0

− cosφ

∣∣∣∣π/2
π/4

dθ

=
4

3
·
√

2

2

∫ 2π

0

1 dθ

=
2
√

2

3
· 2π =

4
√

2π

3
.


