MATH 241 Multivariable Calculus
 Exam \#3 SOLUTIONS
 April 22, 2015 Prof. G. Roberts

1. Multiple Choice: Choose the best answer available (no work required). (5 pts. each)
(a) Suppose that $(3,2)$ is a critical point of the function $f(x, y)$, and that all the partial derivatives of f exist and are continuous. If $f_{x x}(3,2)=-4$ and $f_{y y}(3,2)=1$, then, at the point $(3,2)$, the function $f(x, y)$ has
(i) a maximum,
(ii) a minimum,
(iii) a saddle point,
(iv) not enough information given.

Answer: (iii). Applying the second derivative test, the determinant of the Hessian matrix at the critical point $(3,2)$ is equal to

$$
D=f_{x x}(3,2) \cdot f_{y y}(3,2)-\left(f_{x y}(3,2)\right)^{2}=-4-\left(f_{x y}(3,2)\right)^{2}<0
$$

Thus, $D<0$ regardless of the value of $f_{x y}(3,2)$, and so $(3,2)$ is a saddle point.
Alternatively, since $f_{x x}(3,2)>0$, the function is concave up in the x-direction, but since $f_{y y}(3,2)<0$, it is concave down in the y-direction. This is enough qualitative information to conclude that the critical point is a saddle.
(b) Let R be the rectangle $[-1,1] \times[0,4]$. Which of the following is the Riemann sum for $\iint_{R} g(x, y) d A$ with $m=n=2$, assuming that the sample points are chosen to be the upper right corners?
(i) $[g(-1,0)+g(1,0)+g(-1,4)+g(1,4)] \cdot 8$,
(ii) $[g(0,0)+g(1,0)+g(0,4)+g(1,4)] \cdot 8$,
(iii) $[g(0,2)+g(1,2)+g(1,0)+g(0,0)] \cdot 2$,
(iv) $[g(0,2)+g(1,2)+g(1,4)+g(0,4)] \cdot 2$.

Answer: (iv). To compute the Riemann sum, we make two subdivisions in both the x and y-directions. Hence, $\Delta x=(1--1) / 2=1$ and $\Delta y=(4-0) / 2=2$, so $\Delta A=1 \cdot 2=$ 2 (this eliminates the first two choices). Dividing the rectangle into four sub-rectangles and choosing the upper right corners of each sub-rectangle as the sample points leads to choice (iv).
(c) Suppose that D is a region in the plane whose area is $\sqrt{2}$. The value of the double integral $\iint_{D} 5 d A$ is
(i) 25 ,
(ii) $5 \sqrt{2}$,
(iii) $\sqrt{2}$,
(iv) not enough information given.

Answer: (ii). Recall that the double integral of 1 over the region R is equal to the area of R. Therefore, we have $\iint_{D} 5 d A=5 \iint_{D} 1 d A=5 \sqrt{2}$.
(d) In cylindrical coordinates, assuming that $r \geq 0$, the equation $z+r=0$ describes a
(i) half plane,
(ii) cylinder,
(iii) sphere,
(iv) upward facing cone,
(v) downward facing cone.

Answer: (v). In cylindrical coordinates, $r=\sqrt{x^{2}+y^{2}}$, so that $z=-r$ is equivalent to $z=-\sqrt{x^{2}+y^{2}}$, a downward facing cone with vertex at the origin.
2. Using the method of Lagrange multipliers, find the absolute maximum and minimum values of $f(x, y)=2 x+y^{2}$ subject to the constraint $g(x, y)=2 x^{2}+y^{2}=8$.
State both the maximum and minimum values as well as the point(s) where each occurs. (20 pts.)
Answer: The minimum value of f is -4 , which occurs at the point $(-2,0)$. The maximum value is $17 / 2$, occurring at the points $(1 / 2, \pm \sqrt{15 / 2})$.
Using Lagrange multipliers, we must solve the system of equations $\nabla f=\lambda \nabla g$ and $g=8$. This leads to the system

$$
\begin{align*}
2 & =\lambda 4 x \tag{1}\\
2 y & =\lambda 2 y \tag{2}\\
2 x^{2}+y^{2} & =8 . \tag{3}
\end{align*}
$$

The easiest equation to handle is equation (2). We have $2 y-\lambda 2 y=0$ or $2 y(1-\lambda)=0$. Thus there are two cases: $y=0$ or $\lambda=1$.

Case 1: Suppose that $y=0$. Plugging into the constraint given by equation (3), we see that $2 x^{2}=8$ or $x= \pm 2$. (It follows from equation (1) that $\lambda= \pm 1 / 4$, but this is irrelevant.) Thus, two of our possible extrema occur at $(\pm 2,0)$.

Case 2: Suppose that $\lambda=1$. Plugging into equation (1), we find that $2=4 x$ or $x=1 / 2$. Plugging this value into equation (3) gives $1 / 2+y^{2}=8$ or $y= \pm \sqrt{15 / 2}$. Thus, there are two more possible extrema at the points $(1 / 2, \pm \sqrt{15 / 2})$.

To finish the problem, we evaluate the function f at each of the four points just determined. We have $f(2,0)=4, f(-2,0)=-4$, and $f(1 / 2, \pm \sqrt{15 / 2})=17 / 2$. Hence, the absolute maximum is $17 / 2$ at the points $(1 / 2, \pm \sqrt{15 / 2})$ and the absolute minimum is -4 at the point $(-2,0)$.
3. Consider the integral

$$
\int_{0}^{2} \int_{x^{2}}^{4} 2 x e^{y^{2}} d y d x
$$

(a) Sketch the region of integration. (6 pts.)

Answer: The region of integration is defined by the inequalities $x^{2} \leq y \leq 4$ and $0 \leq x \leq 2$ (vertical cross-sections). This gives the region in green shown below.

(b) Reverse the order of integration and evaluate the integral. (14 pts.)

Answer: $\frac{1}{2}\left(e^{16}-1\right)$.
Note that the integral is impossible to compute in its current form. To reverse the order of integration, we switch from vertical to horizontal cross-sections. Note that $y=x^{2}$ is equivalent to $x=\sqrt{y}$. Thus, an alternative way to describe the region of integration is $0 \leq x \leq \sqrt{y}$ and $0 \leq y \leq 4$.
We have

$$
\begin{aligned}
\int_{0}^{2} \int_{x^{2}}^{4} 2 x e^{y^{2}} d y d x & =\int_{0}^{4} \int_{0}^{\sqrt{y}} 2 x e^{y^{2}} d x d y \\
& =\left.\int_{0}^{4} x^{2} e^{y^{2}}\right|_{0} ^{\sqrt{y}} d y \\
& =\int_{0}^{4} y e^{y^{2}} d y \quad\left(\text { a } u \text {-sub with } u=y^{2}, d u=2 y d y\right) \\
& =\left.\frac{1}{2} e^{y^{2}}\right|_{0} ^{4} \\
& =\frac{1}{2}\left(e^{16}-1\right)
\end{aligned}
$$

4. Using polar coordinates, evaluate

$$
\iint_{D} x d A
$$

where D is the region lying to the right of the y-axis (so $x \geq 0$) and between the two circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$. (14 pts .)
Answer: 14/3. The radii of the two circles are $r=1$ and $r=2$, respectively. Thus, in polar coordinates, the region of integration is $1 \leq r \leq 2,-\pi / 2 \leq \theta \leq \pi / 2$. Since $x=r \cos \theta$ in polar coordinates, we have

$$
\begin{aligned}
\iint_{D} x d A & =\int_{-\pi / 2}^{\pi / 2} \int_{1}^{2} r \cos \theta \cdot r d r d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{1}^{2} r^{2} \cos \theta d r d \theta \\
& =\left.\int_{-\pi / 2}^{\pi / 2} \frac{r^{3}}{3} \cos \theta\right|_{1} ^{2} d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \frac{7}{3} \cos \theta d \theta \\
& =\left.\frac{7}{3} \sin \theta\right|_{-\pi / 2} ^{\pi / 2} \\
& =\frac{7}{3}(1--1)=\frac{14}{3}
\end{aligned}
$$

5. Set up a triple integral to find the volume of the tetrahedron enclosed by the three coordinate planes and the plane $5 x+2 y+z=10$. DO NOT evaluate the triple integral, just set it up. (10 pts.)
Answer: It is helpful to start by finding the x-, y - and z-intercepts of the plane $5 x+2 y+z=10$. For example, when $x=y=0$, we have $z=10$. The x-intercept is 2 and the y-intercept is 5 . The tetrahedron is shown below.

Using vertical line segments parallel to the z-axis, we see that $0 \leq z \leq 10-5 x-2 y$ (starting in the $x y$-plane and exiting in the plane $z=10-5 x-2 y$.) Then we project the entire solid into the $x y$-plane (see figure below). The plane $z=10-5 x-2 y$ intersects the $x y$-plane in the line $y=5-\frac{5}{2} x$. This can be found by plugging in $z=0$ into the equation for the plane, or by using the intercepts to find the equation of the line. Using vertical cross-sections to describe the projection into the $x y$-plane, we have $0 \leq y \leq 5-\frac{5}{2} x$ and $0 \leq x \leq 2$. The triple integral for the volume is therefore

$$
V=\int_{0}^{2} \int_{0}^{5-\frac{5}{2} x} \int_{0}^{10-5 x-2 y} 1 d z d y d x
$$

6. Evaluate

$$
\iiint_{S}\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} d V
$$

where S is the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=2$, above the $x y$-plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$. (16 pts.)
Answer: $\frac{4 \sqrt{2} \pi}{3}$. Using spherical coordinates, the sphere $x^{2}+y^{2}+z^{2}=2$ is simply $\rho=\sqrt{2}$, and the cone $z=\sqrt{x^{2}+y^{2}}$ is just $\phi=\pi / 4$. Since the cone is the upper-limit and the $x y$-plane is the lower limit, we have $\pi / 4 \leq \phi \leq \pi / 2$ (remember that ϕ is the angle measured from the positive z-axis). The other limits of integration are $0 \leq \theta \leq 2 \pi$ and $0 \leq \rho \leq \sqrt{2}$. The integrand $\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$ simplifies to $\left(\rho^{2}\right)^{3 / 2}=\rho^{3}$. We compute

$$
\begin{aligned}
\iiint_{S}\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} d V & =\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{\sqrt{2}} \rho^{3} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{\sqrt{2}} \rho^{5} \sin \phi d \rho d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \frac{\rho^{6}}{6}\right|_{0} ^{\sqrt{2}} \sin \phi d \phi d \theta \\
& =\frac{8}{6} \int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \sin \phi d \phi d \theta \\
& =\frac{4}{3} \int_{0}^{2 \pi}-\left.\cos \phi\right|_{\pi / 4} ^{\pi / 2} d \theta \\
& =\frac{4}{3} \cdot \frac{\sqrt{2}}{2} \int_{0}^{2 \pi} 1 d \theta \\
& =\frac{2 \sqrt{2}}{3} \cdot 2 \pi=\frac{4 \sqrt{2} \pi}{3}
\end{aligned}
$$

